Partition-Guided GANs 代码详解

代码:https://github.com/alisadeghian/PGMGAN
论文
论文解说

readme

基于GANS的无监督多图像生成:分区引导混合的生成对抗网络
(Partition Guided Mixture of Generative Adversarial Networks)

我们提出的完全无监督的图像生成模型PGMGAN学习了基于语义相似性的空间划分,并从每个分区生成图像,以减少模式崩溃模式连接。我们提出了一种新的分块/引导方法,保证为生成器提供指向其指定区域的方向 region. scan_guide_biggan。

Getting Started

Installation

Clone this repo:

git clone https://github.com/alisadeghian/PGMGAN.git
cd PGMGAN

Install the dependencies

conda create --name PGMGAN python=3.7
conda activate PGMGAN
conda install --file requirements.txt
conda install -c conda-forge tensorboardx

Training and Evaluation

Train a model on CIFAR:

python train.py configs/cifar/scan_guide_biggan.yaml

Visualize samples and inferred 推理的 clusters:

python visualize_clusters.py configs/cifar/scan_guide_biggan.yaml --show_clusters

The samples and clusters will be saved to output/cifar/scan_guide_biggan/clusters.

Evaluate the model’s FID: You will need to first gather a set of ground truth train set images to compute metrics against.
您将需要首先收集一组地面真相训练集图像来计算度量标准。

python utils/get_gt_imgs.py --cifar

Then, run the evaluation script:

python metrics.py configs/cifar/scan_guide_biggan.yaml --fid --every -1

You can also evaluate with other metrics 度量 by appending additional flags, such as Inception Score (--inception), the number of covered modes + reverse-KL divergence (--modes), and cluster metrics (--cluster_metrics).

Pretrained Models

You can download pretrained models on CIFAR from here [https://drive.google.com/drive/folders/1lsZKU6T0H91ThW_lCpsEJNGg0rTYGBcY?usp=sharing]
and place them in the output/cifar/scan_guide_biggan/chkpts/ directory.

To reproduce the results in the paper use the following command:

python metrics.py configs/cifar/scan_guide_biggan.yaml --fid --every -1

Evaluation

Visualizations

To visualize generated samples and inferred clusters, run

python visualize_clusters.py config-file

You can set the flag --show_clusters to also visualize the real inferred clusters, but this requires that you have a path to training set images.

Metrics

To obtain generation metrics, fill in the path to your ImageNet or Places dataset directories in utils/get_gt_imgs.py and then run

python utils/get_gt_imgs.py --imagenet --places

to precompute batches of GT images for FID/FSD evaluation.

Then, you can use

python metrics.py config-file

with the appropriate flags compute the FID (--fid), FSD (--fsd), IS (--inception), number of modes covered/ reverse-KL divergence (--modes) and clustering metrics (–cluster_metrics) for each of the checkpoints.

Acknowledgments

This code is heavily based on the GAN-stability and self-cond-gan code bases. Our FSD code is taken from the GANseeing work. To compute inception score, we use the code provided from Shichang Tang. To compute FID, we use the code provided from TTUR. We also use pretrained classifiers given by the pytorch-playground.

补充知识

pprint.PrettyPrinter(indent=1)

美化输出
控制输出的打印时的缩进,行宽、打印深度等,
定义类如下
class pprint.PrettyPrinter(indent = 1,width = 80,depth = None,stream = None,*,compact = False )

  • indent 缩进
  • width 宽度
  • depth 打印深度
  • stream 指输出流对象,stream = None输出流对象默认是sys.stdout
  • compact
    如果compact为false(默认值),则长序列中的每个项目将在单独的行上进行格式化。如果compact为true,则将在每个输出行上格式化适合宽度的项目。

PGMGAN-main

在这里插入图片描述

错误

训练

python train.py configs/cifar/scan_guide_biggan.yaml

在这里插入图片描述

评估

python metrics.py configs/cifar/scan_guide_biggan.yaml --fid --every -1

在这里插入图片描述
需要先生成 gt 图像

python utils/get_gt_imgs.py --cifar

train.py

import argparse
import os
import copy
import pprint
from os import path

import torch
from torch import nn

from gan_training import utils
from gan_training.train import Trainer, update_average
from gan_training.logger import Logger
from gan_training.checkpoints import CheckpointIO
from gan_training.inputs import get_dataset
from gan_training.distributions import get_ydist, get_zdist
from gan_training.eval import Evaluator
from gan_training.config import (load_config, get_clusterer, build_models, build_optimizers)
from seeing.pidfile import exit_if_job_done, mark_job_done

torch.backends.cudnn.benchmark = True

# Arguments
parser = argparse.ArgumentParser(
    description='Train a GAN with different regularization strategies.')#正则化策略
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--outdir', type=str, help='used to override outdir (useful for multiple runs)')
parser.add_argument('--nepochs', type=int, default=3000, help='number of epochs to run before terminating')#结束
parser.add_argument('--model_it', type=int, default=-1,
                    help='which model iteration to load from, -1 loads the most recent model')
#从哪个模型迭代加载,-1加载最近的模型
parser.add_argument('--devices', nargs='+', type=str, default=['0'], help='devices to use')

args = parser.parse_args()
config = load_config(args.config, 'configs/default.yaml')
out_dir = config['training']['out_dir'] if args.outdir is None else args.outdir


def main():
    pp = pprint.PrettyPrinter(indent=1)
    pp.pprint({
        'data': config['data'],
        'generator': config['generator'],
        'discriminator': config['discriminator'],
        'clusterer': config['clusterer'],
        'training': config['training']
    })
    is_cuda = torch.cuda.is_available()

    # Short hands
    batch_size = config['training']['batch_size']
    log_every = config['training']['log_every']
    inception_every = config['training']['inception_every']
    backup_every = config['training']['backup_every']
    sample_nlabels = config['training']['sample_nlabels']
    nlabels = config['data']['nlabels']
    sample_nlabels = min(nlabels, sample_nlabels)
    weight_guide_init = config['resnet']['weight_guide']

    checkpoint_dir = path.join(out_dir, 'chkpts')

    # Create missing directories
    if not path.exists(out_dir):
        os.makedirs(out_dir)
    if not path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)

    # Logger
    checkpoint_io = CheckpointIO(checkpoint_dir=checkpoint_dir)

    device = torch.device("cuda:0" if is_cuda else "cpu")

    train_dataset, _ = get_dataset(
        name=config['data']['type'],
        data_dir=config['data']['train_dir'],
        size=config['data']['img_size'],
        deterministic=config['data']['deterministic'])

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        num_workers=config['training']['nworkers'],
        shuffle=True,
        pin_memory=True,
        sampler=None,
        drop_last=True)

    # Create models
    generator, discriminator = build_models(config)

    # Put models on gpu if needed
    generator = generator.to(device)
    discriminator = discriminator.to(device)

    for name, module in discriminator.named_modules():
        if isinstance(module, nn.Sigmoid):
            print('Found sigmoid layer in discriminator; not compatible with BCE with logits')
            exit()

    g_optimizer, d_optimizer = build_optimizers(generator, discriminator, config)

    devices = [int(x) for x in args.devices]
    generator = nn.DataParallel(generator, device_ids=devices)
    discriminator = nn.DataParallel(discriminator, device_ids=devices)

    # Register modules to checkpoint
    checkpoint_io.register_modules(generator=generator,
                                   discriminator=discriminator,
                                   g_optimizer=g_optimizer,
                                   d_optimizer=d_optimizer)

    # Logger
    logger = Logger(log_dir=path.join(out_dir, 'logs'),
                    img_dir=path.join(out_dir, 'imgs'),
                    monitoring=config['training']['monitoring'],
                    monitoring_dir=path.join(out_dir, 'monitoring'))

    # Distributions
    ydist = get_ydist(nlabels, device=device)
    zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
                      device=device)
    ntest = config['training']['ntest']
    x_test, y_test = utils.get_nsamples(train_loader, ntest)
    x_test, y_test = x_test.to(device), y_test.to(device)
    z_test = zdist.sample((ntest, ))
    utils.save_images(x_test, path.join(out_dir, 'real.png'))
    logger.add_imgs(x_test, 'gt', 0)

    # Test generator
    if config['training']['take_model_average']:
        print('Taking model average')
        bad_modules = [nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
        for model in [generator, discriminator]:
            for name, module in model.named_modules():
                for bad_module in bad_modules:
                    if isinstance(module, bad_module):
                        print('Batch norm in discriminator not compatible with exponential moving average')
                        exit()
        generator_test = copy.deepcopy(generator)
        checkpoint_io.register_modules(generator_test=generator_test)
    else:
        generator_test = generator

    # Load partitioner.
    clusterer = get_clusterer(config)(**config['clusterer']['kwargs'])
    clusterer = clusterer.cuda()
    clusterer.scan_selflabel_model.eval()
    clusterer.fill_x_labels(train_loader)

    # Test the accuracy of the pre-trained partitioner.
    clusterer.test_acc(train_loader)

    # Load checkpoint if it exists
    it = utils.get_most_recent(checkpoint_dir, 'model') if args.model_it == -1 else args.model_it
    epoch_idx = -1

    # Evaluator
    evaluator = Evaluator(
        generator_test,
        zdist,
        ydist,
        train_loader=train_loader,
        clusterer=clusterer,
        batch_size=batch_size,
        device=device,
        inception_nsamples=config['training']['inception_nsamples'])

    # Trainer
    trainer = Trainer(generator,
                      discriminator,
                      g_optimizer,
                      d_optimizer,
                      gan_type=config['training']['gan_type'],
                      reg_type=config['training']['reg_type'],
                      reg_param=config['training']['reg_param'])

    # Training loop
    print('Start training...')
    while it < args.nepochs * len(train_loader):
        epoch_idx += 1

        for x_real, y in train_loader:
            it += 1

            x_real, y = x_real.to(device), y.to(device)
            z = zdist.sample((batch_size, ))
            y = clusterer.get_labels(x_real, y).to(device)

            # Discriminator updates
            dloss, reg = trainer.discriminator_trainstep(x_real, y, z)
            logger.add('losses', 'discriminator', dloss, it=it)
            logger.add('losses', 'regularizer', reg, it=it)

            if it % 4 == 0:
                # Generators updates
                weight_guide = max(
                    config['resnet']['min_weight_guide'],
                    weight_guide_init + config['resnet']['annealing'] * it/4)
                gloss, guide_loss = trainer.generator_trainstep_guided(
                    y, z, clusterer, weight_guide)
                logger.add('losses', 'guide_loss', guide_loss, it=it)
                logger.add('guide', 'weight_guide', weight_guide, it=it)
                logger.add('losses', 'generator', gloss, it=it)

                if config['training']['take_model_average']:
                    update_average(generator_test, generator,
                                   beta=config['training']['model_average_beta'])

            # Print stats
            if it % log_every == 0:
                print("weight_guide:", weight_guide)  # TODO: remove

                guide_loss_last = logger.get_last('losses', 'guide_loss')
                g_loss_last = logger.get_last('losses', 'generator')
                d_loss_last = logger.get_last('losses', 'discriminator')
                d_reg_last = logger.get_last('losses', 'regularizer')

                print('[epoch %0d, it %4d] g_loss = %.4f, d_loss = %.4f, reg=%.4f, guide_reg=%.4f'
                      % (epoch_idx, it, g_loss_last, d_loss_last, d_reg_last, guide_loss_last))

            # (i) Sample if necessary
            if it % config['training']['sample_every'] == 0:
                print('Creating samples...')
                # x = evaluator.create_samples(z_test, y_test)
                x = evaluator.create_samples(z_test, clusterer.get_labels(x_test, y_test).to(device))
                logger.add_imgs(x, 'all', it)

                for y_inst in range(sample_nlabels):
                    x = evaluator.create_samples(z_test, y_inst)
                    logger.add_imgs(x, '%04d' % y_inst, it)

            # (ii) Compute inception if necessary
            if it % inception_every == 0 and it > 0:
                print('PyTorch Inception score...')
                inception_mean, inception_std = evaluator.compute_inception_score()
                logger.add('metrics', 'pt_inception_mean', inception_mean, it=it)
                logger.add('metrics', 'pt_inception_stddev', inception_std, it=it)
                print(f'[epoch {epoch_idx}, it {it}] pt_inception_mean: {inception_mean}, pt_inception_stddev: {inception_std}')

            # (iii) Backup if necessary
            if it % backup_every == 0:
                print('Saving backup...')
                checkpoint_io.save('model_%08d.pt' % it, it=it)
                checkpoint_io.save_clusterer(clusterer, int(it))
                logger.save_stats('stats_%08d.p' % it)

                if it > 0:
                    checkpoint_io.save('model.pt', it=it)
    checkpoint_io.save('model.pt', it=it)


if __name__ == '__main__':
    exit_if_job_done(out_dir)
    main()
    mark_job_done(out_dir)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值