人工智能与模式识别作业

本博客涵盖了多种机器学习模型的应用,包括使用线性回归预测餐厅利润和房价,通过朴素贝叶斯进行身高性别分类,运用深度学习的ANN对MNIST手写数字进行分类,使用SVM识别垃圾邮件,以及基于CNN的FashionMNIST图像分类。资料链接提供详细实现过程和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:使用线性模型实现餐厅利润和房屋价格预测

在这里插入图片描述

要求:

  1. 可视化数据集的样本分布结果

  2. 可视化线性回归拟合结果

  3. 预测在面积大小为3.1415的城市开一家餐厅的预计利润,以及面积为2000卧室数量为1的房屋的成交价格

  4. 完成实验报告

数据集:

ex1data1.txt
ex1data2.txt

sklearn线性回归实现房价预测模型

WORD版https://download.csdn.net/download/qq_43620967/33477669

2:利用贝叶斯分类器实现基于身高的性别分类

模式识别-贝叶斯分类器-知识总结与作业(python版)
朴素贝叶斯分类器原理解析与python实现
在这里插入图片描述
所有资料:
https://download.csdn.net/download/qq_43620967/34884544

3:基于ANN的MNIST图像分类

https://download.csdn.net/download/qq_43620967/38401770

4:基于 SVM 的垃圾邮件分类

https://download.csdn.net/download/qq_43620967/39624637
在这里插入图片描述
机器学习作业—支持向量机SVM(二)垃圾邮件分类

机器学习算法(一)SVM

使用SVM预测模型的通用步骤

  1. 选择使用的SVM类
  2. 用数据训练模型
  3. 检查验证误差并作为基准线
  4. 为SVM参数尝试不同的值
  5. 检查验证误差是否改进
  6. 再次使用最优参数的数据来训练模型
import numpy as np
from sklearn.model_selection import GridSearchCV
parameters={'kernel':['linear','rbf','sigmoid','poly'],'C':np.linspace(0.1,20,50),'gamma':np.linspace(0.1,20,20)}
svc = svm.SVC()
model = GridSearchCV(svc,parameters,cv=5,scoring='accuracy')
model.fit(X_train,y_train)
model.best_params_
model.score(X_test,y_test)

5:基于CNN的FashionMNIST图像分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
pytorch进行fashion mnist数据集分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值