目录
1:使用线性模型实现餐厅利润和房屋价格预测
要求:
-
可视化数据集的样本分布结果
-
可视化线性回归拟合结果
-
预测在面积大小为3.1415的城市开一家餐厅的预计利润,以及面积为2000卧室数量为1的房屋的成交价格
-
完成实验报告
数据集:
ex1data1.txt
ex1data2.txt
WORD版https://download.csdn.net/download/qq_43620967/33477669
2:利用贝叶斯分类器实现基于身高的性别分类
模式识别-贝叶斯分类器-知识总结与作业(python版)
朴素贝叶斯分类器原理解析与python实现
所有资料:
https://download.csdn.net/download/qq_43620967/34884544
3:基于ANN的MNIST图像分类
https://download.csdn.net/download/qq_43620967/38401770
4:基于 SVM 的垃圾邮件分类
https://download.csdn.net/download/qq_43620967/39624637
机器学习作业—支持向量机SVM(二)垃圾邮件分类
使用SVM预测模型的通用步骤
- 选择使用的SVM类
- 用数据训练模型
- 检查验证误差并作为基准线
- 为SVM参数尝试不同的值
- 检查验证误差是否改进
- 再次使用最优参数的数据来训练模型
import numpy as np
from sklearn.model_selection import GridSearchCV
parameters={'kernel':['linear','rbf','sigmoid','poly'],'C':np.linspace(0.1,20,50),'gamma':np.linspace(0.1,20,20)}
svc = svm.SVC()
model = GridSearchCV(svc,parameters,cv=5,scoring='accuracy')
model.fit(X_train,y_train)
model.best_params_
model.score(X_test,y_test)