求逆元

求逆元

\quad 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指: a ∗ 1 a = 1 a*\frac{1}{a}= 1 aa1=1,那么逆元和倒数之间的区别就是:假设 x x x a a a的逆元,那么 a ∗ x = 1 % p a * x = 1\%p ax=1%p,它们拥有相同的余数,那么 a , x a,x a,x互为模 p p p的逆元。也就是说,有两个数的乘积,如果模 p p p后等于 1 1 1,则它们互为 p p p的逆元)。也就是只多了一个取余的操作,这个取余的操作,就会保证 a a a的逆元不一定只是 a a a的倒数。那么我们的逆元有什么作用呢?

\quad 并且取余还不满足下面式子:

\quad \quad \quad \quad \quad \quad a b % p = a % p b % p % p \frac{a}{b}\%p = \frac{a\%p}{b\%p} \% p ba%p=b%pa%p%p ,

那么我们如果遇到 b b b过大必须在中间过程进行取余的操作,那么我们会发现在乘法中满足: ( a ∗ b ) % p = ( a % p ∗ b % p ) % p (a*b) \% p = (a\%p * b\%p) \%p (ab)%p=(a%pb%p)%p,那么我们只要将上面式子转换为下面乘法的式子就可以了

我们用 i n v ( b ) inv(b) inv(b)来表示b的逆元,那么他一定满足:

\quad \quad b ∗ i n v ( b ) = 1 % p ˉ → b = 1 i n v ( b ) \bar{b*inv(b) = 1\%p}\to{b = \frac{1}{inv(b)}} binv(b)=1%pˉb=inv(b)1
那么我们代入上面的除法的式子:

\quad \quad a b % p = ( a ∗ i n v ( b ) ) % p = ( a % p ∗ i n v ( b ) % p ) % p \frac{a}{b}\%p = (a * inv(b)) \%p = (a\%p * inv(b)\%p) \% p ba%p=(ainv(b))%p=(a%pinv(b)%p)%p

\quad \quad \qquad 即: a b % p = ( a % p ∗ i n v ( b ) % p ) % p \frac{a}{b}\%p= (a\%p * inv(b)\%p) \% p ba%p=(a%pinv(b)%p)%p

\quad 这样我们就可以根据逆元来将除法取余的式子转换为乘法取余的式子

逆元的计算

我们这里先介绍第一种计算逆元的方式,利用费马小定理计算逆元。
费马定理可以参考这篇博客:点击这里
费马小定理:如果 p p p是质数(素数),并且 g c d ( a , p ) = = 1 gcd(a,p) == 1 gcd(a,p)==1, 那么就会满足下面的式子 a p − 1 ≡ 1 % p a^{p−1} ≡1\%p ap11%p ,(当然了,既然 p p p已经是素数,那么如果 a < p a < p a<p那么就一定会满足这个式子)。既然这样我们要得到 a a a我们就可以利用上面的式子来计算 i n v ( a ) : inv(a) : inv(a):

\quad \quad \quad a p − 1 = 1 % p a^{p−1} =1\%p ap1=1%p

\quad \quad \quad a ∗ a p − 2 = 1 % p a*a^{p−2}=1\%p aap2=1%p \quad a a a的逆元就是 ( a p − 2 ) % p (a^{p-2})\%p (ap2)%p
可得:

\quad \quad \quad \quad \quad \quad i n v ( a ) = ( a p − 2 ) % p inv(a)=(a^{p-2})\%p inv(a)=(ap2)%p

这样我们就得到了我们需要的逆元:

Code:

ll qpow(int m, int k, int mod)
{
    ll res=1, t=m;
    while (k)
    {
        if(k&1)
            res = res * t % mod;
        t = t * t % mod;
        k >>= 1;
    }
    return res;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a,p-2,p);
}

扩展欧几里得求逆元:
扩展欧几里得可以参考这篇博客:点击这里
a ∗ x + b ∗ p = 1 a*x+b*p=1 ax+bp=1两边对p取模
可得: a ∗ x = 1 % p a*x=1\%p ax=1%p \quad x x x 就是我们要求得逆元。
g c d ( a , p ) gcd(a,p) gcd(a,p)不为 1 1 1说明逆元不存在
由扩展欧几里得可得

Code:

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int g=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return g;
}

int mod_reverse(int a,int p)//a*x=1(mod p) 求a的逆元x
{
    int d,x,y;
    d=exgcd(a,p,x,y);
    if(d==1)
        return (x%p+p)%p;
    else
        return -1;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值