链接:https://ac.nowcoder.com/acm/contest/3282/E
来源:牛客网
题目描述
KevenKeven 特别喜欢线段树,他给你一个长度为 nn 的序列,对序列进行mm 次操作。
操作有两种:
1\ l\ r\ k1 l r k :表示将下标在 [l , r][l,r] 区间内的数字替换成 [k,k+1,…,k+r-l][k,k+1,…,k+r−l]
2\ l\ r2 l r :表示查询区间 [l , r][l,r] 的区间和
输入描述:
第一行两个整数 n、mn、m,表示序列的长度和操作次数(1<=n,m<=2e5)(1<=n,m<=2e5)
第二行 nn 个整数,表示序列的初始值 a_1,a_2,…a_n(1<=a_i<=2e5)a
1
,a
2
,…a
n
(1<=a
i
<=2e5)
接下来 mm 行,每行三或四个数字,若第一个数字是 11,则表示操作 11,反之则表示操作 22。
(1<=l<=r<=n,1<=k<=2e5)(1<=l<=r<=n,1<=k<=2e5)
输出描述:
对于每个操作 22,输出一行一个整数表示区间和。
示例1
输入
复制
5 5
1 1 1 1 1
2 1 5
1 1 5 1
2 1 5
1 1 3 3
2 1 3
输出
复制
5
15
12
说明
第一次1操作后,序列是1 2 3 4 5
第二次1操作后,序列是3 4 5 4 5
典型的线段树操作,那么我们在更新区间的时候该怎么做,如果是一个一个的点肯定要超时,我们借鉴一下lazy数组的思路,首先区间更新是一个等差数列,如果操作区间在我们查询区间的范围内,我们直接修改,并且标记lazy数组,延缓其更新操作,等到再次查询到此区间的时候我们在更新它。
这里lazy[k]存的是相对的等差数列的数、
比如操作区间是1-7;第一项是v=3
mid=(1+5)/2=4;
左子树1-4;
右子树5-7;
现在的查询区间是L-R=2-5
左右子树都有我们需要二分,
mid=(1+4)/2=2;
左子树的左子树1-2;
左子树的右子树3-4//完全包含于查询区间我们修改其值,注意到当前的结点有r-l+1=4-3+1=2个,初始值为v+l-L=3+3-3=4;–>也就是标记的lazy[k]的值
那么等差数列的前n项和为sn=(a1+an)n/2;那么t[k]=(lazy[k]+lazy[k]+r-l)(r-l+1)/2;
至于3-3和4-4区间,修不修改,看下次更新或者查询会不会涉及到它,涉及到了就会更新,因为向上更新是更了的,所以总的结果是不会错的,至于下推与否,看下次更新或者查询会不会涉及到它。
我们为什么向上更新过后,还要下推呐,比如
我们上一次更新区间为1-4;
虽然t【1-4】的值更新了,下面底层的值并没有更新。
下一次我们要查询区间2-6了,因为2-4的值没有更新就会错,所以我们需要提前将lazy里面的东西更新,至于其下面区间的同样的,只在查询到的时候才选择更新。这就是lazy数组,延迟更新,保证复杂度为logn;否则区间更新复杂度为nlogn,显然太大
#include<bits/stdc++.h>
using namespace std;
int a[200005];
long long s,k,S[800005],T[800005]={0};
long long get(long long x,long long y)
{
return y*(y-1)/2-x*(x-1)/2;
}
void Build(int L,int R,int x)
{
if(L==R)
{
S[x]=a[L];
return;
}
int M=(L+R)>>1;
Build(L,M,2*x),Build(M+1,R,2*x+1);
S[x]=S[2*x]+S[2*x+1];
}
void down(int lenl,int lenr,int x)
{
if(!T[x])return;
T[2*x]=T[x];
S[2*x]=(2*T[2*x]+lenl-1)*lenl/2;
T[2*x+1]=T[x]+lenl,S[2*x+1]=(2*T[2*x+1]+lenr-1)*lenr/2;
T[x]=0;
}
void update(int L,int R,int l,int r,int x)
{
if(l<=L&&R<=r)
{
T[x]=k+L-l;
S[x]=(2*T[x]+R-L)*(R-L+1)/2;
return;
}
int M=(L+R)>>1;
down(M-L+1,R-M,x);
if(M>=l)update(L,M,l,r,2*x);
if(M<r)update(M+1,R,l,r,2*x+1);
S[x]=S[2*x]+S[2*x+1];
}
void search(int L,int R,int l,int r,int x)
{
if(l<=L&&R<=r)
{
s+=S[x];
return;
}
int M=(L+R)>>1;
down(M-L+1,R-M,x);
if(M>=l)search(L,M,l,r,2*x);
if(M<r)search(M+1,R,l,r,2*x+1);
}
int main()
{
int i,n,m,op,l,r;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
Build(1,n,1);
while(m--)
{
scanf("%d%d%d",&op,&l,&r);
if(op==1)scanf("%lld",&k),update(1,n,l,r,1);
else s=0,search(1,n,l,r,1),printf("%lld\n",s);
}
return 0;
}