昨天上午补了点题然后一直在整理斐波那契数列的相关知识,这个数列性质的应用经常出,就csdn搜了一波。下午是在刷题,看了会书。
具体关于斐波那契数列的知识如下:
f1=1
f2=1
f3=f2+f1=1+1=2
f4=f2+f3=1+2=3
f5=f3+f4=2+3=5
f6=f4+f5=3+5=8
f7=f5+f6=5+8=13
f8=f6+f7=8+13=21
f9=f7+f8=13+21=34
f10=f8+f9=21+34=55
fn=f(n-2)+f(n-1)
(也可令f0=0)
1,黄金分割
随着n的增大fn/fn-1 接近于0.618.;
即是:lim(fn/fn-1)=0.618 (+∞)
2,平方与前后项
从第二项开始,每个奇数项的平方都比前后两项之积多一,每个偶数项的平方都比前后两项之积少一:
fn*fn=f(n-1)*f(n+1)+1 (n=3,5,7,9……) 如果令f0=0,则对于f1也有f1*f1=f0*f2+1.
fn*fn=f(n-1)*f(n+1)-1 (n=2,4,6,8……)
又能推导出:
3,求出前缀和,(F0=0,F1=1,F2=2,F3=4,F4=7,F5=12,F6=20,F7=33,F8=54)对于3<=n<=8, 有
Fn=f(n+2)-1,若有f0=0,也有F0=f2-1.
即为:
4,求和
奇数项求和:
偶数项求和:
平方求和:
5,利用公式可直接求出 斐波那契数列的第n项fn
6,两倍项关系
f(2n)/fn=f(n-1)+f(n+1)
例如n=3, f6/f3=4, f2+f4=1+3=4;n=4, f8/f4=7, f3+f5=2+5=7……
7,斐波那契数列其他性质;
纯本人手动整理,哈哈,还有一个就应该是矩阵快速幂求斐波那契数列第n项,这个也比较简单了,由于队友会就没有看了。