2019-7-30训练日志

 昨天上午补了点题然后一直在整理斐波那契数列的相关知识,这个数列性质的应用经常出,就csdn搜了一波。下午是在刷题,看了会书。

具体关于斐波那契数列的知识如下:

   

f1=1

f2=1

f3=f2+f1=1+1=2

f4=f2+f3=1+2=3

f5=f3+f4=2+3=5

f6=f4+f5=3+5=8

f7=f5+f6=5+8=13

f8=f6+f7=8+13=21

f9=f7+f8=13+21=34

f10=f8+f9=21+34=55

fn=f(n-2)+f(n-1)

(也可令f0=0)

1,黄金分割

 随着n的增大fn/fn-1 接近于0.618.;

即是:lim(fn/fn-1)=0.618   (+∞)

2,平方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积多一,每个偶数项的平方都比前后两项之积少一:

fn*fn=f(n-1)*f(n+1)+1  (n=3,5,7,9……) 如果令f0=0,则对于f1也有f1*f1=f0*f2+1.

fn*fn=f(n-1)*f(n+1)-1   (n=2,4,6,8……)

又能推导出:

               

3,求出前缀和,(F0=0,F1=1,F2=2,F3=4,F4=7,F5=12,F6=20,F7=33,F8=54)对于3<=n<=8, 有

Fn=f(n+2)-1,若有f0=0,也有F0=f2-1.

即为:

                 

 

4,求和

奇数项求和:

偶数项求和:

平方求和:

5,利用公式可直接求出 斐波那契数列的第n项fn

 

                            

 

6,两倍项关系

f(2n)/fn=f(n-1)+f(n+1)

例如n=3,  f6/f3=4,  f2+f4=1+3=4;n=4,  f8/f4=7,  f3+f5=2+5=7……

7,斐波那契数列其他性质;

纯本人手动整理,哈哈,还有一个就应该是矩阵快速幂求斐波那契数列第n项,这个也比较简单了,由于队友会就没有看了。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值