softmax两种实现方式


方式1–自构造

获取图像分类数据集Fashion-MNIST

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()  ## 使用svg显示图片


#通过ToTensor实例将图像数据从PIL类型变成32位浮点数格式
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root = './data',train = True, transform = trans,download = True)
mnist_test = torchvision.datasets.FashionMNIST(root = './data',train = False, transform = trans,download = True)
len(mnist_train),len(mnist_test)

可视化数据集

def get_fashion_labels(labels):
    '''返回数据集的文本标签'''
    text_labels = ['t-shirt','trouser','pullover','dress','coat','sandal','shirt','sneaker','bag','ankle boot']
    return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    '''绘制图像列表'''
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows,num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax,img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            ax.imshow(img.numpy())
        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28),3 , 6, titles = get_fashion_labels(y)) 
#channel数字不用,reshape成batcg_size大小,宽,高不变,3行,每行6张图片。

在这里插入图片描述
读取批量数据,大小为batch_size

batch_size = 256
def get_dataloader_workers():
    '''使用四个进程读取数据'''
    return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers = get_dataloader_workers())
test_iter = data.DataLoader(mnist_train, batch_size, shuffle=False, num_workers = get_dataloader_workers())
timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'

在这里插入图片描述
整合所有组件
现在我们[定义load_data_fashion_mnist函数],用于获取和读取Fashion-MNIST数据集。 这个函数返回训练集和验证集的数据迭代器。 此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="./data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="./data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers = get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=True, 
                            num_workers = get_dataloader_workers()))
import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

展平每个图像,将他们视为长度为784(28*28)的向量,因为有10个类别,输出网络维度为10

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

定义softmax操作

回顾矩阵按某个轴求和。 给定一个矩阵X,我们可以对所有元素求和

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

在这里插入图片描述

def softmax(x):
    X_exp = torch.exp(X)   #指数运算
    partition = X_exp.sum(1, keepdim=True) #维度为1,行求和,如上面操作
    return X_exp / partition  #应用了广播机制

验证softmax

X = torch.normal(0,1,(2,5)) #创建均值为0,方差为1,2行5列的矩阵
X_prob = softmax(X)
X_prob , X_prob.sum(1)  # sum(1) 等价于 sum(axis=1)

在这里插入图片描述

定义模型

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) 
# X 批量大小✖输入维度的矩阵 256✖789,-1:批量大小,W.shape[0] 784  shape[0]行数

补充:怎么在预测值中根据标号把预测值拿出来
创建一个数据y_hat,包含两个样本在三个类别的预测概率,使用y作为y_hat中概率的索引

y = torch.tensor([0, 2])#两个真实标号
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) #预测值,假设有三类,则预测为2*3的矩阵
y_hat[[0, 1], y]  #对第0个样本,拿出y[0]对应元素,第1个样本,拿出y[1]对应元素。对真实标号那个类预测的概率是多少,拿出来

在这里插入图片描述

定义交叉熵损失函数

def cross_entropy(y_hat, y):
    return -torch.log(y_hat[range(len(y_hat)),y])
cross_entropy(y_hat, y)

在这里插入图片描述

计算分类精度

def accuracy(y_hat, y):
    '''计算预测正确的数量'''
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: #shape大于1,列数大于1
        y_hat = y_hat.argmax(axis=1) #按照每一行argmax,每行中元素值最大的那个下标存在y_hat里面。预测分类的类别
    cmp = y_hat.type(y.dtype) == y   #y_hat 与 y 的数据类型可能不一样,把y_hat转换为y的数据类型
    return float(cmp.type(y.dtype).sum()) #转换为跟y一样的形状,求和。这个函数时找出来预测正确的样本数
accuracy(y_hat, y)/len(y)

我们将继续使用之前定义的变量y_hat和y分别作为预测的概率分布和标签。 可以看到,第一个样本的预测类别是2(该行的最大元素为0.6,索引为2),这与实际标签0不一致。 第二个样本的预测类别是2(该行的最大元素为0.5,索引为2),这与实际标签2一致。 因此,这两个样本的分类精度率为0.5。
在这里插入图片描述
同样,对于任意数据迭代器data_iter可访问的数据集, [我们可以评估在任意模型net的精度]

def evaluate_accuracy(net,data_iter):
    '''计算在指定数据集上模型的精度'''
    if isinstance(net, torch.nn.Module):#如果是torch.nn实现的模型的话,把它转为评估模式--不计算梯度了,只做一个forward模式
        net.eval() #将模型设置为评估模式
    metric = Accumulator(2) #正确预测数、预测总数。 Accumulator 累加器
    for X, y in data_iter:
        metric.add(accuracy(net(X), y), y.numel()) #y.numel() 样本总数
    return metric[0] / metric[1]  #返回分类正确样本数除以总样本数,得到精度

这里定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在(Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量)。 当我们遍历数据集时,两者都将随着时间的推移而累加。

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

由于我们使用随机权重初始化net模型, 因此该模型的精度应接近于随机猜测。 例如在有10个类别情况下的精度为0.1

evaluate_accuracy(net, test_iter)

在这里插入图片描述

训练

def train_epoch(net, train_iter, loss, updater): 
    """训练模型一个迭代周期"""
    if isinstance(net, torch.nn.Module):   # torch.nn实现的话,将模型设置为训练模式
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3) #长度为3的跌点其累加迭代信息
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad() #梯度置0
            l.mean().backward() #计算梯度
            updater.step()   #更新梯度
        else:    #自己重头实现的话
            # 使用定制的优化器和损失函数
            l.sum().backward()  #l是向量,求和算梯度
            updater(X.shape[0]) #更新
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) #计算损失、预测正确个数、总数
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,定义一个在动画中绘制数据的实用程序类–Animator

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)
def train(net, train_iter, test_iter, loss, num_epochs, updater):  
    """训练模型"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])  # 调用可视化模块画图
    for epoch in range(num_epochs):
        train_metrics = train_epoch(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics


lr = 0.1
# 小批量随机梯度下降
def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)  


num_epochs = 20
train(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

在这里插入图片描述

预测

def predict(net, test_iter, n=50):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)  #真实标签
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1)) #预测标签
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict(net, test_iter)

在这里插入图片描述

方式2–调用torch.nn实现

import torch
from torch import nn
from d2l import torch as d2l


batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# PyTorch不会隐式地调整输入的形状。因此,在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01) ## m是线性层时,默认把他初始化为均值为0,方差为0,0.01的随机值

net.apply(init_weights); #初始化权重函数应用到net上面,每一层初始化一次

loss = nn.CrossEntropyLoss(reduction='none') #交叉熵损失函数

trainer = torch.optim.SGD(net.parameters(), lr=0.1) #使用学习率为0.1的小批量随机梯度下降作为优化算法
#调用之前定义的训练函数训练模型
num_epochs = 10
train(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值