【分治NTT/多项式求逆】JZOJ3303. 城市规划

本文探讨了如何利用图论中的连通图概念和算法解决城市规划问题,具体包括使用分治NTT和多项式求逆等高级算法来计算特定规模的无向连通图数目。文章详细解释了算法原理,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

求出n 个点的简单(无重边无自环)无向连通图数目.
n <= 130000

Solution

  • 设 f[i] 表示大小为i的答案,g[i]为2C(i,2)表示大小为i的任意无向图个数。
  • 考虑运用容斥。f[i] = g[i]-sigma( f[j] * g[i-j] * C(i-1,j-1) )
  • 用所有方案减去不连通的方案。枚举1所在的连通块(保证不重复不遗漏),再考虑哪些点在这个联通块中,最后剩下的点随便连(反正不跟1所在联通块连),那么这个方案就是不连通的方案数。

分治NTT

  • 将组合数拆开即可得到
    f[i] = g[i] - sigma( f[j] * g[i-j] * (i-1)! / (j-1)! / (i-j)!)

  • 我们不难发现sigma里面有的只跟i-j有关,有的只跟j有关,所以我们将这些项整理一下,将无关的(i-1)!提出来,得到:
    f[i] = g[i] - (i-1)! * sigma( f[j] / (j-1)! * g[i-j] / (i-j) !)

  • a[i]=f[i]/(i-1)! , b[i]=g[i]/i!

  • sigma中的东西可以表示成a与b的卷积

  • 卷积的一般形式:F[ n ] = sigma (a[ i ] * b [ j ] | ( i + j = n ) )

  • 现在我们已经将它转化成NTT的形式了,但是每一个i都是由前面全部的j所贡献得到的,我们不可能枚举每一个点再枚举它对后面的贡献,我们考虑分治。

  • 当前区间[l,r],先做[l,mid],再考虑左边对右边的贡献,再做[mid+1,r],这样可以保证前边的先完成,才能贡献后边。

  • 我们考虑[l,mid]对于[mid+1,r]的贡献(这不就是CDQ分治吗?)。将[l,mid]的a提出来,与一个长度为r-l的b卷起来,得到答案再将对应位置贡献加到[mid+1,r]的对应位置中去。

  • 每个位置会参与log次贡献,每贡献一次总共nlog(n),均摊下来每个位置log的时间,所以总复杂度为O(nlog2n)

  • 这题不失为一道分治NTT的模板题。

  • 不会FFT/NTT的强烈推荐网上的一篇blog (实际上是我太菜了)

  • https://www.cnblogs.com/zwfymqz/p/8244902.html

多项式求逆

  • Solution中的式子转化一下可以得到下列式子(注:将f[n](上面是i)项右移,发现组合数和2的次幂这几个系数都为1,所以可以将sigma上的n-1变成n)
    在这里插入图片描述
  • 左式已知,右边仅有fk/(k-1)!那一项不知道,要求它。
  • 设F=sigma(fk/(k-1)!),G=sigma(2C(n-k,2)/(n-k)!)
  • 考虑sigma可以看做卷积,卷积可以看成是多项式乘法。
  • 所以上式可以写成H=F*G
  • 已知多项式G,H,要求多项式F。
  • 所以F=H*G-1
  • 将G多项式求逆一波后再用多项式乘法乘在一起即可。
  • 多项式乘法也是一个NTT。
  • 多项式求逆是一个倍增的NTT.
  • 所以时间复杂度还是O(nlog2n)
  • 有一个很好的多项式求逆总结的blog,挂在这里以供学习:
  • https://www.cnblogs.com/yoyoball/p/8724115.html

分治NTT的代码

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#define maxn 130005
#define ll long long 
#define mo 1004535809
using namespace std;

ll n,i,j,k,f[maxn],g[maxn],_2[maxn],mul[maxn],invm[maxn];
ll a[maxn*2],b[maxn*2],bt[maxn*2];

ll ksm(ll x,ll y){
	ll s=1;
	for(;y;y/=2,x=x*x%mo) if (y&1)
		s=s*x%mo;
	return s;
}

void ntt(ll *a,int n,int sig){
	for(int i=0;i<n;i++) if (i<bt[i])
		swap(a[i],a[bt[i]]);
	for(int mid=1;mid<n;mid<<=1){
		ll gn=ksm(3,(mo-1)/(mid<<1));
		if (sig<0) gn=ksm(gn,mo-2);
		for(int j=0;j<n;j+=mid<<1){
			ll g=1;
			for(int k=0;k<mid;k++,g=g*gn%mo){
				ll x=a[j+k],y=g*a[j+k+mid]%mo;
				a[j+k]=(x+y)%mo;
				a[j+k+mid]=(x-y+mo)%mo;
			}
		}
	}
}

void merge(int l,int r){
	if (l==r) {f[l]=(f[l]+g[l])%mo;return;}
	int mid=(l+r)/2;
	merge(l,mid);
	int lim=1; while (lim<=r-l) lim<<=1;
	for(int i=1;i<lim;i++) bt[i]=(bt[i>>1]>>1)|((i&1)*(lim>>1));
	for(int i=0;i<lim;i++) a[i]=b[i]=0;
	for(int i=0;i<=mid-l;i++) a[i]=f[l+i]*invm[l+i-1]%mo;
	for(int i=0;i<=r-l;i++) b[i]=g[i]*invm[i]%mo;
	ntt(a,lim,1); ntt(b,lim,1);
	for(int i=0;i<lim;i++) a[i]=a[i]*b[i]%mo;
	ntt(a,lim,-1);
	ll ny=ksm(lim,mo-2);
	for(int i=mid+1;i<=r;i++) 
		f[i]=(f[i]-a[i-l]*ny%mo*mul[i-1]%mo+mo)%mo;
	merge(mid+1,r);
}

int main(){
	scanf("%lld",&n);
	_2[0]=1; for(i=1;i<=n;i++) _2[i]=_2[i-1]*2%mo;
	g[0]=1; for(i=1;i<=n;i++) g[i]=g[i-1]*_2[i-1]%mo;
	mul[0]=invm[0]=1;
	for(i=1;i<=n;i++) mul[i]=mul[i-1]*i%mo,invm[i]=invm[i-1]*ksm(i,mo-2)%mo;
	
	merge(1,n);
	printf("%lld",f[n]);
}

多项式求逆的代码

注意一个细节

  • 当次数为lim的多项式A和B卷起来的时候,它们在做DFT和IDFT时的值域要开成lim * 2,因为它们的次数之和为lim * 2,尽管我们之后可能只需要次数lim以内的卷积结果,但是为了避免其他位置的印象要开大。
  • 封装大法好。
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#define maxn 130005
#define maxm 520010
#define ll long long 
#define mo 1004535809
using namespace std;

ll n,i,j,k,lim,f[maxn],g[maxn],_2[maxn],mul[maxn],invm[maxn];
ll G[maxm],GG[maxm],H[maxm];
ll bt[maxm],A[maxm],B[maxm],C[maxm];

ll ksm(ll x,ll y){
	ll s=1;
	for(;y;y/=2,x=x*x%mo) if (y&1)
		s=s*x%mo;
	return s;
}

void ntt(ll *a,int n,int sig){
	for(int i=0;i<n;i++) if (i<bt[i])
		swap(a[i],a[bt[i]]);
	for(int mid=1;mid<n;mid<<=1){
		ll gn=ksm(3,(mo-1)/(mid<<1));
		if (sig<0) gn=ksm(gn,mo-2);
		for(int j=0;j<n;j+=mid<<1){
			ll g=1;
			for(int k=0;k<mid;k++,g=g*gn%mo){
				ll x=a[j+k],y=g*a[j+k+mid]%mo;
				a[j+k]=(x+y)%mo;
				a[j+k+mid]=(x-y+mo)%mo;
			}
		}
	}
}

ll a[maxm],b[maxm];

void mul_xl(ll *A,ll *B,ll lim){
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	ll bat=lim<<1;
	for(int i=0;i<lim;i++) a[i]=A[i],b[i]=B[i];
	for(int i=0;i<bat;i++) bt[i]=(bt[i>>1]>>1)|((i&1)*(bat>>1));
	ntt(a,bat,1),ntt(b,bat,1);
	for(int i=0;i<bat;i++) a[i]=a[i]*b[i]%mo;
	ntt(a,bat,-1);
	ll ny=ksm(bat,mo-2);
	for(int i=0;i<bat;i++) A[i]=a[i]*ny%mo;
}

void inv(ll *A,ll *B,ll n){
	B[0]=ksm(A[0],mo-2);
	for(int lim=2;lim<=n*2;lim<<=1){
		memset(C,0,sizeof(C));
		for(int i=0;i<lim>>1;i++) C[i]=(B[i]<<1)%mo;
		mul_xl(B,B,lim>>1);
		mul_xl(B,A,lim);
		for(int i=0;i<lim;i++) B[i]=(C[i]-B[i]+mo)%mo;
	}
}

int main(){
	scanf("%lld",&n);
	_2[0]=1; for(i=1;i<=n;i++) _2[i]=_2[i-1]*2%mo;
	g[0]=1; for(i=1;i<=n;i++) g[i]=g[i-1]*_2[i-1]%mo;
	mul[0]=invm[0]=1;
	for(i=1;i<=n;i++) mul[i]=mul[i-1]*i%mo,invm[i]=invm[i-1]*ksm(i,mo-2)%mo;
	
	for(i=0;i<=n;i++) {
		G[i]=g[i]*invm[i]%mo;
		H[i]=g[i]*invm[i-1]%mo;
	}
	
	inv(G,GG,n);
	for(lim=1;lim<=n;lim<<=1);
	mul_xl(H,GG,lim);
	printf("%lld",H[n]*mul[n-1]%mo);
}
飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新和实践能力,尤其是在嵌入式系统、自动控制和机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向和位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波和滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度和方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器和串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序和主循环等。理解和优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试和优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别和解决。 团队协作与版本控制:在项目开发过程中,团队协作和版本控制工具(如Git)的应用不可或缺,能够保
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环和电流环两个闭环,系统能够对电机的转速和电流进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电流调节器(ACR),分别对转速和电流进行调控。检测电路用于采集实际转速和电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值