课程笔记01背包(动态规划)

解题思路

  1. 首先将本问题转化成一个填表问题,利用公式填写,dp[i][j]数组的含义是,从i i+1 i+2 ……n 这些物品当中,容量为j时的背包装物品最大的价值。
    首先确定边界,dp[n][1~W],表示处理的第n个物品背包的最大价值。
    当第n个物品重量w[n]大于背包总容量的时候,背包一定装不下这个物品,背包价值为0 。
    同理,如果第n个物品重量w[n]小于背包总重量的时候,背包一定要装下这个物品,为实现价值最大,此时dp[n][j~W]=v[n]

  1. 处理第n个物品完成后,继续填写后面的表格,不难得出动态规划转移方程是:
    i 表示处理i~n的这些物品,j 表示背包的容量
    在这里插入图片描述

解释:
如果第i个物品装不进这个背包当中,就是当w[i]>j时,一定放不进背包,则p[i][j]=p[i+1][j]
如果重量允许,放到背包里会出现两种情况,①放入。背包重量减少,价值增加。②不放入,因为之前存放方式的价值更大。
在这两种情况中,去最大值,即可得到动态规划方程:dp[i][j] = max(dp[i + 1][j], dp[i + 1][j - w[i]] + v[i])


表格:
在这里插入图片描述


代码实现

  1. 第一个for循环是处理第n个物品的放置情况。
  2. 第二个for循环,当物品不可以放入时,等于上一个物品的价值。可以放入时,取价值最大。
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
const int NUM = 105;
int w[NUM];
int v[NUM];
int dp[NUM][NUM];
int knapsack(int n, int c)
{
	for (int i = 1; i <= c; ++i) // 只考虑第n件物品,填表第n行
	{
		if (i >= w[n])
		{
			dp[n][i] = v[n];
		}
	}
	for (int i = n - 1; i >= 1; --i)
	{
		for (int j = 0; j < w[i]; ++j)
		{
			dp[i][j] = dp[i + 1][j];
		}
		for (int j = w[i]; j <= c; ++j)
		{
			dp[i][j] = max(dp[i + 1][j], dp[i + 1][j - w[i]] + v[i]);
		}
	}
	return dp[1][c];
}
int main()
{
	int n, c;
	cin >> n >> c;
	for (int i = 1; i <= n; ++i)
	{
		cin >> w[i] >> v[i];
	}
	cout << knapsack(n, c) << endl;
	return 0;
}
/*
4 5
2 12
1 10
3 20
2 15

37
*/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值