MOP系列
MOP1:
{ f 1 ( x ) = ( 1 + g ( x ) ) x 1 f 2 ( x ) = ( 1 + g ( x ) ) ( 1 − x 1 ) \left\{\begin{array}{l}f_{1}(x)=(1+g(x)) x_{1} \\ f_{2}(x)=(1+g(x))(1-\sqrt{x_{1}})\end{array}\right. {f1(x)=(1+g(x))x1f2(x)=(1+g(x))(1−x1)
where
g
(
x
)
=
2
sin
(
π
x
1
)
∑
i
=
2
n
(
−
0.9
t
i
2
+
∣
t
i
∣
0.6
)
g(x)=2 \sin \left(\pi x_{1}\right) \sum_{i=2}^{n}\left(-0.9 t_{i}^{2}+\left|t_{i}\right|^{0.6}\right)
g(x)=2sin(πx1)∑i=2n(−0.9ti2+∣ti∣0.6);
t
i
=
x
i
−
sin
(
0.5
π
x
1
)
t_{i}=x_{i}-\sin \left(0.5 \pi x_{1}\right)
ti=xi−sin(0.5πx1);
its PF is
f
2
=
1
−
f
1
,
0
≤
f
1
≤
1
f_{2}=1-\sqrt{f_{1}}, 0 \leq f_{1} \leq 1
f2=1−f1,0≤f1≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
<
1
,
x
j
=
sin
(
0.5
π
x
1
)
\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0<x_{1}<1, x_{j}=\sin \left(0.5 \pi x_{1}\right)\right.
{(x1,⋯,xn)∣0<x1<1,xj=sin(0.5πx1);
j
=
2
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left.j=2, \ldots, n ; \text { or } x_{1}=0,1 .\right\}
j=2,…,n; or x1=0,1.}.
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
MOP2:
{ f 1 ( x ) = ( 1 + g ( x ) ) x 1 f 2 ( x ) = ( 1 + g ( x ) ) ( 1 − x 1 2 ) \left\{\begin{array}{l}f_{1}(x)=(1+g(x)) x_{1} \\ f_{2}(x)=(1+g(x))\left(1-x_{1}^{2}\right)\end{array}\right. {f1(x)=(1+g(x))x1f2(x)=(1+g(x))(1−x12)
where
g
(
x
)
=
10
sin
(
π
x
1
)
∑
i
=
2
n
∣
t
i
∣
1
+
e
5
∣
t
i
∣
g(x)=10 \sin \left(\pi x_{1}\right) \sum_{i=2}^{n} \frac{\left|t_{i}\right|}{1+e^{5\left|t_{i}\right|}}
g(x)=10sin(πx1)∑i=2n1+e5∣ti∣∣ti∣;
t
i
=
x
i
−
sin
(
0.5
π
x
1
)
t_{i}=x_{i}-\sin \left(0.5 \pi x_{1}\right)
ti=xi−sin(0.5πx1);
its PF is
f
2
=
1
−
f
1
2
,
0
≤
f
1
≤
1
f_{2}=1-f_{1}^{2}, 0 \leq f_{1} \leq 1
f2=1−f12,0≤f1≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
<
1
,
x
j
=
sin
(
0.5
π
x
1
)
\left\{ \left( {{x}_{1}},\cdots ,{{x}_{n}} \right)\mid 0<{{x}_{1}}<1,{{x}_{j}}=\sin \left( 0.5\pi {{x}_{1}} \right) \right.
{(x1,⋯,xn)∣0<x1<1,xj=sin(0.5πx1);
j
=
2
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left.j=2, \ldots, n ; \text { or } x_{1}=0,1 .\right\}
j=2,…,n; or x1=0,1.}.
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
MOP3:
where
g
(
x
)
=
10
sin
(
π
x
1
2
)
∑
i
=
2
n
∣
t
i
∣
1
+
e
5
∣
t
i
∣
g(x)=10 \sin \left(\frac{\pi x_{1}}{2}\right) \sum_{i=2}^{n} \frac{\left|t_{i}\right|}{1+e^{5\left|t_{i}\right|}}
g(x)=10sin(2πx1)∑i=2n1+e5∣ti∣∣ti∣;
t
i
=
x
i
−
sin
(
0.5
π
x
1
)
t_{i}=x_{i}-\sin \left(0.5 \pi x_{1}\right)
ti=xi−sin(0.5πx1);
its PF is
f
2
=
1
−
f
1
2
,
0
≤
f
1
≤
1
f_{2}=\sqrt{1-f_{1}^{2}}, 0 \leq f_{1} \leq 1
f2=1−f12,0≤f1≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
≤
1
,
x
j
=
sin
(
0.5
π
x
1
)
\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0<x_{1} \leq 1, x_{j}=\sin \left(0.5 \pi x_{1}\right)\right.
{(x1,⋯,xn)∣0<x1≤1,xj=sin(0.5πx1);
j
=
2
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left.j=2, \ldots, n ; \text { or } x_{1}=0,1 .\right\}
j=2,…,n; or x1=0,1.}.
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
MOP4:
where
g
(
x
)
=
10
sin
(
π
x
1
)
∑
i
=
2
n
∣
t
i
∣
1
+
e
5
∣
t
i
∣
g(x)=10 \sin \left(\pi x_{1}\right) \sum_{i=2}^{n} \frac{\left|t_{i}\right|}{1+e^{5 \mid t_{i}} \mid}
g(x)=10sin(πx1)∑i=2n1+e5∣ti∣∣ti∣;
t
i
=
x
i
−
sin
(
0.5
π
x
1
)
t_{i}=x_{i}-\sin \left(0.5 \pi x_{1}\right)
ti=xi−sin(0.5πx1);
its PF is discontinuous;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
<
1
,
x
j
=
sin
(
0.5
π
x
1
)
\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0<x_{1}<1, x_{j}=\sin \left(0.5 \pi x_{1}\right)\right.
{(x1,⋯,xn)∣0<x1<1,xj=sin(0.5πx1);
j
=
2
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left.j=2, \ldots, n ; \text { or } x_{1}=0,1 .\right\}
j=2,…,n; or x1=0,1.}.
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
MOP5:
{ f 1 ( x ) = ( 1 + g ( x ) ) x 1 f 2 ( x ) = ( 1 + g ( x ) ) ( 1 − x 1 ) \left\{\begin{array}{l}f_{1}(x)=(1+g(x)) x_{1} \\ f_{2}(x)=(1+g(x))(1-\sqrt{x_{1}})\end{array}\right. {f1(x)=(1+g(x))x1f2(x)=(1+g(x))(1−x1)
where
g
(
x
)
=
2
∣
cos
(
π
x
1
)
∣
∑
i
=
2
n
(
−
0.9
t
i
2
+
∣
t
i
∣
0.6
)
g(x)=2\left|\cos \left(\pi x_{1}\right)\right| \sum_{i=2}^{n}\left(-0.9 t_{i}^{2}+\left|t_{i}\right|^{0.6}\right)
g(x)=2∣cos(πx1)∣∑i=2n(−0.9ti2+∣ti∣0.6);
t
i
=
x
i
−
sin
(
0.5
π
x
1
)
t_{i}=x_{i}-\sin \left(0.5 \pi x_{1}\right)
ti=xi−sin(0.5πx1);
its PF is
f
2
=
1
−
f
1
,
0
≤
f
1
≤
1
f_{2}=1-\sqrt{f_{1}}, 0 \leq f_{1} \leq 1
f2=1−f1,0≤f1≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
≤
x
1
≤
1
,
x
j
=
sin
(
0.5
π
x
1
)
\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0 \leq x_{1} \leq 1, x_{j}=\sin \left(0.5 \pi x_{1}\right)\right.
{(x1,⋯,xn)∣0≤x1≤1,xj=sin(0.5πx1);
j
=
2
,
…
,
n
;
or
x
1
=
0.5
}
\left.j=2, \ldots, n ; \text { or } x_{1}=0.5\right\}
j=2,…,n; or x1=0.5}.
Domain: [ 0 , 1 ] n [0,1]^{n} [0,1]n; Number of Variables = 10
MOP6:
{ f 1 ( x ) = ( 1 + g ( x ) ) x 1 x 2 f 2 ( x ) = ( 1 + g ( x ) ) x 1 ( 1 − x 2 ) f 3 ( x ) = ( 1 + g ( x ) ) ( 1 − x 1 ) \left\{\begin{array}{l}f_{1}(x)=(1+g(x)) x_{1} x_{2} \\ f_{2}(x)=(1+g(x)) x_{1}\left(1-x_{2}\right) \\ f_{3}(x)=(1+g(x))\left(1-x_{1}\right)\end{array}\right. ⎩⎨⎧f1(x)=(1+g(x))x1x2f2(x)=(1+g(x))x1(1−x2)f3(x)=(1+g(x))(1−x1)
where
g
(
x
)
=
2
sin
(
π
x
1
)
∑
i
=
3
n
(
−
0.9
t
i
2
+
∣
t
i
∣
0.6
)
g(x)=2\sin \left( \pi {{x}_{1}} \right)\sum\limits_{i=3}^{n}{\left( -0.9t_{i}^{2}+{{\left| {{t}_{i}} \right|}^{0.6}} \right)}
g(x)=2sin(πx1)i=3∑n(−0.9ti2+∣ti∣0.6);
t
i
=
x
i
−
x
1
x
2
{{t}_{i}}={{x}_{i}}-{{x}_{1}}{{x}_{2}}
ti=xi−x1x2;
its PF is
f
1
+
f
2
+
f
3
=
1
,
0
≤
f
1
,
f
2
,
f
3
≤
1
{{f}_{1}}+{{f}_{2}}+{{f}_{3}}=1,0\le {{f}_{1}},{{f}_{2}},{{f}_{3}}\le 1
f1+f2+f3=1,0≤f1,f2,f3≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
<
1
,
0
≤
x
2
≤
1
\left\{ \left( {{x}_{1}},\cdots ,{{x}_{n}} \right)\mid 0<{{x}_{1}}<1,0\le {{x}_{2}}\le 1 \right.
{(x1,⋯,xn)∣0<x1<1,0≤x2≤1;
x
j
=
x
1
x
2
,
j
=
3
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left. {{x}_{j}}={{x}_{1}}{{x}_{2}},j=3,\ldots ,n;\text{ or }{{x}_{1}}=0,1. \right\}
xj=x1x2,j=3,…,n; or x1=0,1.}
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
MOP7:
where
g
(
x
)
=
2
sin
(
π
x
1
)
∑
i
=
3
n
(
−
0.9
t
i
2
+
∣
t
i
∣
0.6
)
g(x)=2\sin \left( \pi {{x}_{1}} \right)\sum\limits_{i=3}^{n}{\left( -0.9t_{i}^{2}+{{\left| {{t}_{i}} \right|}^{0.6}} \right)}
g(x)=2sin(πx1)i=3∑n(−0.9ti2+∣ti∣0.6);
t
i
=
x
i
−
x
1
x
2
{{t}_{i}}={{x}_{i}}-{{x}_{1}}{{x}_{2}}
ti=xi−x1x2;
its PF is
f
1
2
+
f
2
2
+
f
3
2
=
1
,
0
≤
f
1
,
f
2
,
f
3
≤
1
f_{1}^{2}+f_{2}^{2}+f_{3}^{2}=1,0\le {{f}_{1}},{{f}_{2}},{{f}_{3}}\le 1
f12+f22+f32=1,0≤f1,f2,f3≤1;
its PS is
{
(
x
1
,
⋯
,
x
n
)
∣
0
<
x
1
<
1
,
0
≤
x
2
≤
1
\left\{ \left( {{x}_{1}},\cdots ,{{x}_{n}} \right)\mid 0<{{x}_{1}}<1,0\le {{x}_{2}}\le 1 \right.
{(x1,⋯,xn)∣0<x1<1,0≤x2≤1;
x
j
=
x
1
x
2
,
j
=
3
,
…
,
n
;
or
x
1
=
0
,
1.
}
\left. {{x}_{j}}={{x}_{1}}{{x}_{2}},j=3,\ldots ,n;\text{ or }{{x}_{1}}=0,1. \right\}
xj=x1x2,j=3,…,n; or x1=0,1.}.
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 10
F系列
F1:
f
1
(
x
)
=
(
1
+
g
(
x
)
)
x
1
f_{1}(x)=(1+g(x)) x_{1}
f1(x)=(1+g(x))x1
f
2
(
x
)
=
(
1
+
g
(
x
)
)
(
1
−
x
1
)
5
f_{2}(x)=(1+g(x))(1-\sqrt{x_{1}})^{5}
f2(x)=(1+g(x))(1−x1)5
g
(
x
)
=
2
sin
(
0.5
π
x
1
)
(
n
−
1
+
∑
i
=
2
n
(
y
i
2
−
cos
(
2
π
y
i
)
)
)
g(x)=2 \sin \left(0.5 \pi x_{1}\right)\left(n-1+\sum_{i=2}^{n}\left(y_{i}^{2}-\cos \left(2 \pi y_{i}\right)\right)\right)
g(x)=2sin(0.5πx1)(n−1+∑i=2n(yi2−cos(2πyi)))
where
y
i
=
2
:
n
=
x
i
−
sin
(
0.5
π
x
i
)
y_{i=2: n}=x_{i}-\sin \left(0.5 \pi x_{i}\right)
yi=2:n=xi−sin(0.5πxi)
POF:
f
2
=
(
1
−
f
1
)
5
f_{2}=(1-\sqrt{f_{1}})^{5}
f2=(1−f1)5
POS:
x
i
=
sin
(
0.5
π
x
i
)
,
i
=
2
,
…
,
n
x_{i}=\sin \left(0.5 \pi x_{i}\right), i=2, \ldots, n
xi=sin(0.5πxi),i=2,…,n
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 30
F2:
f
1
(
x
)
=
(
1
+
g
(
x
)
)
(
1
−
x
1
)
f_{1}(x)=(1+g(x))\left(1-x_{1}\right)
f1(x)=(1+g(x))(1−x1)
f
2
(
x
)
=
1
2
(
1
+
g
(
x
)
)
(
x
1
+
x
1
cos
2
(
4
π
x
1
)
)
f_{2}(x)=\frac{1}{2}(1+g(x))\left(x_{1}+\sqrt{x_{1}} \cos ^{2}\left(4 \pi x_{1}\right)\right)
f2(x)=21(1+g(x))(x1+x1cos2(4πx1))
g
(
x
)
=
2
sin
(
0.5
π
x
1
)
(
n
−
1
+
∑
i
=
2
n
(
y
i
2
−
cos
(
2
π
y
i
)
)
)
g(x)=2 \sin \left(0.5 \pi x_{1}\right)\left(n-1+\sum_{i=2}^{n}\left(y_{i}^{2}-\cos \left(2 \pi y_{i}\right)\right)\right)
g(x)=2sin(0.5πx1)(n−1+∑i=2n(yi2−cos(2πyi)))
where
y
i
=
2
:
n
=
x
i
−
sin
(
0.5
π
x
i
)
y_{i=2: n}=x_{i}-\sin \left(0.5 \pi x_{i}\right)
yi=2:n=xi−sin(0.5πxi)
POF:
f
2
=
1
2
(
1
−
f
1
+
1
−
f
1
cos
2
(
4
π
(
1
−
f
1
)
)
)
f_{2}=\frac{1}{2}\left(1-f_{1}+\sqrt{1-f_{1}} \cos ^{2}\left(4 \pi\left(1-f_{1}\right)\right)\right)
f2=21(1−f1+1−f1cos2(4π(1−f1)))
POS:
x
i
=
sin
(
0.5
π
x
i
)
,
i
=
2
,
…
,
n
x_{i}=\sin \left(0.5 \pi x_{i}\right), i=2, \ldots, n
xi=sin(0.5πxi),i=2,…,n
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 30
F3:
f
1
(
x
)
=
(
1
+
g
(
x
)
)
x
1
f_{1}(x)=(1+g(x)) x_{1}
f1(x)=(1+g(x))x1
f
2
(
x
)
=
1
2
(
1
+
g
(
x
)
)
(
1
−
x
1
0.1
+
(
1
−
x
1
)
2
cos
2
(
3
π
x
1
)
)
f_{2}(x)=\frac{1}{2}(1+g(x))\left(1-x_{1}^{0.1}+(1-\sqrt{x_{1}})^{2} \cos ^{2}\left(3 \pi x_{1}\right)\right)
f2(x)=21(1+g(x))(1−x10.1+(1−x1)2cos2(3πx1))
g
(
x
)
=
2
sin
(
0.5
π
x
1
)
(
n
−
1
+
∑
i
=
2
n
(
y
i
2
−
cos
(
2
π
y
i
)
)
)
g(x)=2 \sin \left(0.5 \pi x_{1}\right)\left(n-1+\sum_{i=2}^{n}\left(y_{i}^{2}-\cos \left(2 \pi y_{i}\right)\right)\right)
g(x)=2sin(0.5πx1)(n−1+∑i=2n(yi2−cos(2πyi)))
where
y
i
=
2
:
n
=
x
i
−
sin
(
0.5
π
x
i
)
y_{i=2: n}=x_{i}-\sin \left(0.5 \pi x_{i}\right)
yi=2:n=xi−sin(0.5πxi)
POF:
f
2
=
1
2
(
1
−
f
1
0.1
+
(
1
−
f
1
)
2
cos
2
(
3
π
f
1
)
)
f_{2}=\frac{1}{2}\left(1-f_{1}^{0.1}+(1-\sqrt{f_{1}})^{2} \cos ^{2}\left(3 \pi f_{1}\right)\right)
f2=21(1−f10.1+(1−f1)2cos2(3πf1))
POS:
x
i
=
sin
(
0.5
π
x
i
)
,
∀
x
i
∈
x
II
x_{i}=\sin \left(0.5 \pi x_{i}\right), \forall x_{i} \in \mathbf{x}_{\text {II }}
xi=sin(0.5πxi),∀xi∈xII
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 30
F4:
f
1
(
x
)
=
(
1
+
g
(
x
)
)
(
x
1
x
2
x
3
)
f_{1}(x)=(1+g(x))\left(\frac{x_{1}}{\sqrt{x_{2} x_{3}}}\right)
f1(x)=(1+g(x))(x2x3x1)
f
2
(
x
)
=
(
1
+
g
(
x
)
)
(
x
2
x
1
x
3
)
f_{2}(x)=(1+g(x))\left(\frac{x_{2}}{\sqrt{x_{1} x_{3}}}\right)
f2(x)=(1+g(x))(x1x3x2)
f
3
(
x
)
=
(
1
+
g
(
x
)
)
(
x
3
x
1
x
2
)
f_{3}(x)=(1+g(x))\left(\frac{x_{3}}{\sqrt{x_{1} x_{2}}}\right)
f3(x)=(1+g(x))(x1x2x3)
where
g
(
x
)
=
∑
i
=
4
n
(
x
i
−
2
)
2
g(x)=\sum_{i=4}^{n}\left(x_{i}-2\right)^{2}
g(x)=∑i=4n(xi−2)2
POF:
f
1
f
2
f
3
=
1
f_{1} f_{2} f_{3}=1
f1f2f3=1
POS:
x
i
=
2
,
i
=
3
,
…
,
n
x_{i}=2, i=3, \ldots, n
xi=2,i=3,…,n
Domain:
[
1
,
4
]
n
{{[1,4]}^{n}}
[1,4]n; Number of Variables = 30
F5:
f
1
(
x
)
=
(
1
+
g
(
x
)
)
(
(
1
−
x
1
)
x
2
)
f_{1}(x)=(1+g(x))\left(\left(1-x_{1}\right) x_{2}\right)
f1(x)=(1+g(x))((1−x1)x2)
f
2
(
x
)
=
(
1
+
g
(
x
)
)
(
x
1
(
1
−
x
2
)
)
f_{2}(x)=(1+g(x))\left(x_{1}\left(1-x_{2}\right)\right)
f2(x)=(1+g(x))(x1(1−x2))
f
3
(
x
)
=
(
1
+
g
(
x
)
)
(
1
−
x
1
−
x
2
+
2
x
1
x
2
)
6
f_{3}(x)=(1+g(x))\left(1-x_{1}-x_{2}+2 x_{1} x_{2}\right)^{6}
f3(x)=(1+g(x))(1−x1−x2+2x1x2)6
where
g
(
x
)
=
∑
i
=
3
n
(
x
i
−
0.5
)
2
g(x)=\sum_{i=3}^{n}\left(x_{i}-0.5\right)^{2}
g(x)=∑i=3n(xi−0.5)2
POF:
f
3
=
(
1
−
f
1
−
f
2
)
6
f_{3}=\left(1-f_{1}-f_{2}\right)^{6}
f3=(1−f1−f2)6
POS:
x
i
=
0.5
,
i
=
3
,
…
,
n
x_{i}=0.5, i=3, \ldots, n
xi=0.5,i=3,…,n
Domain:
[
0
,
1
]
n
[0,1]^{n}
[0,1]n; Number of Variables = 30
F6:
f
1
(
x
)
=
cos
4
(
0.5
π
x
1
)
cos
4
(
0.5
π
x
2
)
f_{1}(x)=\cos ^{4}\left(0.5 \pi x_{1}\right) \cos ^{4}\left(0.5 \pi x_{2}\right)
f1(x)=cos4(0.5πx1)cos4(0.5πx2)
f
2
(
x
)
=
cos
4
(
0.5
π
x
1
)
sin
4
(
0.5
π
x
2
)
f_{2}(x)=\cos ^{4}\left(0.5 \pi x_{1}\right) \sin ^{4}\left(0.5 \pi x_{2}\right)
f2(x)=cos4(0.5πx1)sin4(0.5πx2)
f
3
(
x
)
=
(
1
+
g
(
x
)
1
+
cos
2
(
0.5
π
x
1
)
)
1
1
+
g
(
x
)
f_{3}(x)=\left(\frac{1+g(x)}{1+\cos ^{2}\left(0.5 \pi x_{1}\right)}\right)^{\frac{1}{1+g(x)}}
f3(x)=(1+cos2(0.5πx1)1+g(x))1+g(x)1
where
g
(
x
)
=
1
10
∑
i
=
3
n
(
1
+
x
i
2
−
cos
(
2
π
x
i
)
)
)
\left.g(x)=\frac{1}{10} \sum_{i=3}^{n}\left(1+x_{i}^{2}-\cos \left(2 \pi x_{i}\right)\right)\right)
g(x)=101∑i=3n(1+xi2−cos(2πxi)))
POF:
f
3
(
1
+
f
1
+
f
2
)
=
1
f_{3}(1+\sqrt{f_{1}}+\sqrt{f_{2}})=1
f3(1+f1+f2)=1
POS:
x
i
=
0
,
i
=
3
,
…
,
n
x_{i}=0, i=3, \ldots, n
xi=0,i=3,…,n
Domain: [ 0 , 1 ] n [0,1]^{n} [0,1]n; Number of Variables = 30