图的邻接表表示法类似于树的孩子链表表示法。对于图G中的每个顶点vi,该方法把所有邻接于vi的顶点vj链成一个带头结点的单链表,这个单链表就称为顶点vi的邻接表(Adjacency List)。
以下代码测试过,为图的邻接表表示方式。
C++ Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
/************************************************************************/
/* 图的邻接表存储结构 */ /************************************************************************/ #ifdef _MSC_VER #define _CRTDBG_MAP_ALLOC #include <stdlib.h> #include <crtdbg.h> #ifdef _DEBUG #define new new(_NORMAL_BLOCK, __FILE__, __LINE__) #endif #endif #include <stdio.h> #define MaxVertexNum 100 #define QueueSize 30 typedef enum{ FALSE, TRUE }Boolean; Boolean visited[MaxVertexNum]; typedef char VertexType; typedef int EdgeType; typedef struct node //边表结点 { int adjvex; //邻接点域 struct node *next; //域链 //若是要表示边上的权,则应增加一个数据域 }EdgeNode; typedef struct vnode //顶点边结点 { VertexType vertex; //顶点域 EdgeNode *firstedge; //边表头指针 }VertexNode; typedef VertexNode AdjList[MaxVertexNum]; //AdjList是邻接表类型 typedef struct { AdjList adjlist; //邻接表 int n, e; //图中当前顶点数和边数 }ALGraph; //对于简单的应用,无须定义此类型,可直接使用AdjList类型 /************************************************************************/ /* 建立无向图的邻接表算法 */ /************************************************************************/ void CreateGraphAL(ALGraph *G) { int i, j, k; EdgeNode * s; printf( "请输入顶点数和边数(输入格式为:顶点数,边数):\n"); scanf( "%d,%d", &(G->n), &(G->e)); // 读入顶点数和边数 printf( "请输入顶点信息(输入格式为:顶点号<CR>)每个顶点以回车作为结束:\n"); for (i = 0; i < G->n; i++) // 立有n个顶点的顶点表 { scanf( "\n%c", &(G->adjlist[i].vertex)); // 读入顶点信息 G->adjlist[i].firstedge = NULL; // 点的边表头指针设为空 } printf( "请输入边的信息(输入格式为:i,j):\n"); for (k = 0; k < G->e; k++) // 建立边表 { scanf( "\n%d,%d", &i, &j); // 读入边<Vi,Vj>的顶点对应序号 s = new EdgeNode; // 生成新边表结点s s->adjvex = j; // 邻接点序号为j s->next = G->adjlist[i].firstedge; // 将新边表结点s插入到顶点Vi的边表头部 G->adjlist[i].firstedge = s; s = new EdgeNode; s->adjvex = i; s->next = G->adjlist[j].firstedge; G->adjlist[j].firstedge = s; } } /************************************************************************/ /* 深度优先遍历 */ /************************************************************************/ void DFS(ALGraph *G, int i) { //以vi为出发点对邻接表表示的图G进行深度优先搜索 EdgeNode *p; printf( "visit vertex:%c\n", G->adjlist[i].vertex); // 访问顶点vi visited[i] = TRUE; //标记vi已访问 p = G->adjlist[i].firstedge; //取vi边表的头指针 while (p) { //依次搜索vi的邻接点vj,这里j=p->adjvex if (!visited[p->adjvex]) //若vi尚未被访问 DFS(G, p->adjvex); //则以Vj为出发点向纵深搜索 p = p->next; //找vi的下一邻接点 } } void DFSTraverseM(ALGraph *G) { int i; for (i = 0; i < G->n; i++) visited[i] = FALSE; for (i = 0; i < G->n; i++) if (!visited[i]) DFS(G, i); } /************************************************************************/ /* 广度优先遍历 */ /************************************************************************/ typedef struct { int front; int rear; int count; int data[QueueSize]; }CirQueue; void InitQueue(CirQueue *Q) { Q->front = Q->rear = 0; Q->count = 0; } int QueueEmpty(CirQueue *Q) { return Q->count == 0; } int QueueFull(CirQueue *Q) { return Q->count == QueueSize; } void EnQueue(CirQueue *Q, int x) { if (QueueFull(Q)) printf( "Queue overflow"); else { Q->count++; Q->data[Q->rear] = x; Q->rear = (Q->rear + 1) % QueueSize; } } int DeQueue(CirQueue *Q) { int temp; if (QueueEmpty(Q)) { printf( "Queue underflow"); return NULL; } else { temp = Q->data[Q->front]; Q->count--; Q->front = (Q->front + 1) % QueueSize; return temp; } } void BFS(ALGraph*G, int k) { // 以vk为源点对用邻接表表示的图G进行广度优先搜索 int i; CirQueue Q; //须将队列定义中DataType改为int EdgeNode *p; InitQueue(&Q); //队列初始化 printf( "visit vertex:%c\n", G->adjlist[k].vertex); //访问源点vk visited[k] = TRUE; EnQueue(&Q, k); //vk已访问,将其人队。(实际上是将其序号人队) while (!QueueEmpty(&Q)) { //队非空则执行 i = DeQueue(&Q); //相当于vi出队 p = G->adjlist[i].firstedge; //取vi的边表头指针 while (p) { //依次搜索vi的邻接点vj(令p->adjvex=j) if (!visited[p->adjvex]) { //若vj未访问过 printf( "visit vertex:%c\n", G->adjlist[p->adjvex].vertex); //访问vj visited[p->adjvex] = TRUE; EnQueue(&Q, p->adjvex); //访问过的vj人队 } p = p->next; //找vi的下一邻接点 } } } void BFSTraverseM(ALGraph *G) { int i; for (i = 0; i < G->n; i++) visited[i] = FALSE; for (i = 0; i < G->n; i++) if (!visited[i]) BFS(G, i); } /************************************************************************/ /* 打印邻接表 */ /************************************************************************/ void PrintfGraphAL(ALGraph *G) { for ( int i = 0; i < G->n; i++) { printf( "vertex:%c", G->adjlist[i].vertex); EdgeNode *p = G->adjlist[i].firstedge; while (p) { printf( "→:%d", p->adjvex); p = p->next; } printf( "\n"); } } /************************************************************************/ /* 删除邻接表 */ /************************************************************************/ void DeleteGraphAL(ALGraph *G) { for ( int i = 0; i < G->n; i++) { EdgeNode *q; EdgeNode *p = G->adjlist[i].firstedge; while (p) { q = p; p = p->next; delete q; } G->adjlist[i].firstedge = NULL; } } /************************************************************************/ /* 主函数调用 */ /************************************************************************/ int main() { #ifdef _MSC_VER _CrtSetDbgFlag(_CRTDBG_LEAK_CHECK_DF | _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG)); _CrtDumpMemoryLeaks(); #endif ALGraph G; CreateGraphAL(&G); printf( "深度优先遍历:\n"); DFSTraverseM(&G); printf( "广度优先遍历:\n"); BFSTraverseM(&G); printf( "邻接表:\n"); PrintfGraphAL(&G); DeleteGraphAL(&G); return 0; } |
测试结果如下:
NormalText Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
请输入顶点数和边数(输入格式为:顶点数,边数):
8,9 请输入顶点信息(输入格式为:顶点号<CR>)每个顶点以回车作为结束: A B C D E F G H 请输入边的信息(输入格式为:i,j): 0,1 0,2 1,3 1,4 2,5 2,6 3,7 4,7 5,6 深度优先遍历: visit vertex:A visit vertex:C visit vertex:G visit vertex:F visit vertex:B visit vertex:E visit vertex:H visit vertex:D 广度优先遍历: visit vertex:A visit vertex:C visit vertex:B visit vertex:G visit vertex:F visit vertex:E visit vertex:D visit vertex:H 邻接表: vertex:A→:2→:1 vertex:B→:4→:3→:0 vertex:C→:6→:5→:0 vertex:D→:7→:1 vertex:E→:7→:1 vertex:F→:6→:2 vertex:G→:5→:2 vertex:H→:4→:3 请按任意键继续. . . |
如果测试有误,若是代码有错,请指出,共同学习。
再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow