模拟6-三角形详解

模拟6-三角形详解

题目描述

在这里插入图片描述

自己思考:

当时自己做题目找规律的时候找错了推了一个(n+1)*(n-2)的公式结果就g了,10分。

解题思路:

首先第一步找出规律:

在这里插入图片描述
由此我们发现当在最底下添加一条边的时候,此时增加的三角形个数是:n+n-1+n-2+…+1 = (n+1)∗n2\frac{(n+1)*n}{2}2(n+1)n(其中n是线条的个数)。
推得公式an=an−1+((n+1)∗n2)a_n = a_{n-1} + (\frac{(n+1)*n}{2})an=an1+(2(n+1)n),如果按照这个公式进行求解的话那么此时O(n)的时间复杂度能够解决70%的数据。
继续优化公式:
an=an−1+(n+1)∗n2a_n = a_{n-1} + \frac{(n+1)*n}{2}an=an1+2(n+1)n
= an−2+(n−1)∗n2+n∗(n+1)2a_{n-2} + \frac {(n-1)*n}{2} +\frac{n*(n+1)}{2}an2+2(n1)n+2n(n+1)
=an−3+(n−2)∗(n−1)2+(n−1)∗n2+n∗(n+1)2a_{n-3} + \frac {(n-2)*(n-1)}{2} + \frac {(n-1)*n}{2} +\frac{n*(n+1)}{2}an3+2(n2)(n1)+2(n1)n+2n(n+1)
= (1∗2+2∗3+3∗4+4∗5+...+(n+1)∗n)2\frac{(1 * 2 + 2 * 3 + 3 * 4 + 4 * 5 + ... + (n+1) * n)}{2}2(12+23+34+45+...+(n+1)n)
= 1+2+3+4+...+n+12+22+32+...+n22\frac{1+2+3+4+...+n +1^{2} + 2^2+3^2+...+n^2}{2}21+2+3+4+...+n+12+22+32+...+n2
=(∑i=1ni+∑i=1ni2)∗12(\displaystyle \sum_{i=1}^{n} i + \displaystyle \sum_{i = 1}^{n}i^2) * \frac{1}{2}(i=1ni+i=1ni2)21
=((n+1)∗n2+(n∗(n+1)∗(2∗n+1)6)∗12(\frac{(n+1)*n}{2} +\frac{(n*(n+1)*(2*n+1)}{6}) * \frac{1}{2}(2(n+1)n+6(n(n+1)(2n+1))21
=(n∗(n+1)∗(n+2)6\frac{(n*(n+1)*(n+2)}{6}6(n(n+1)(n+2)
观察这个公式其中n的取值范围1e9,如果直接相乘的话会造成数据溢出,所以此时可以利用边算边取余的方式,但是由于式子中带了一个除以6那么此时是没有办法直接边算边取余,可以发现n、n+1、n+2这三个数字连乘必然存在因子2和3可以先除掉。

AC代码

#include<iostream>
#define INF 0x3f3f3f3f
#define ll long long
#define N 1000005
#define M 100005
using namespace std;
int main(){
	ll n;
	cin>>n;
	n--;
	ll n1 = n+1,n2 = n+2;
	if(n%2 == 0){
		n /= 2;
	}else if(n1%2 == 0){
		n1 /=2;
	}else if(n2%2 == 0){
		n2 /= 2;
	}
	if(n%3 == 0){
		n /= 3;
	}else if(n1%3 == 0){
		n1 /= 3;
	}else if(n2%3 == 0){
		n2 /= 3;
	}
	cout<<n*n1%998244353*n2%998244353;
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值