机器学习单层感知机梯度推导

激活函数:

在这里插入图片描述
图示:
(存在某个阈值
梯度求解:
f ( x ) = 1 1 + e − x f(x) = {1 \above{0.5px} 1 + {e^{-x}}} f(x)=1+ex1
f ′ ( x ) = e − x ( 1 + e − x ) 2 f'(x) = {e^{-x} \above{0.5px} ({1 + e^{-x}})^2} f(x)=(1+ex)2ex
f ′ ( x ) = ( 1 + e − x ) − 1 ( 1 + e − x ) 2 f'(x) = {(1 + e^{-x}) - 1 \above{0.5px}({1 + e^{-x}})^2} f(x)=(1+ex)2(1+ex)1
f ′ ( x ) = 1 1 + e − x − 1 ( 1 + e − x ) 2 f'(x) = {\frac 1 {1 + e^{-x}} - \frac 1 {{(1 + e^{-x}})^2}} f(x)=1+ex1(1+ex)21
σ ′ ( x ) = σ ( x ) ( 1 − σ ( x ) ) \sigma'(x) = \sigma(x)(1 - \sigma(x)) σ(x)=σ(x)(1σ(x))
在这里插入图片描述

损失函数使用:MSE

E = 1 2 ( O 0 1 − t ) 2 ( t 是 标 签 值 , O 0 1 是 经 过 s i g m o i d 激 活 函 数 后 的 输 出 值 , 1 / 2 是 为 了 求 导 时 消 掉 常 数 项 w j 0 表 示 第 j 个 权 值 ) E = {\frac 1 2} (O_0^1 - t)^2 \\ (t是标签值,O_0^1是经过sigmoid激活函数后的输出值, 1/2是为了求导时消掉常数项w_{j_0}表示第j个权值) E=21(O01t)2(tO01sigmoid,1/2wj0j
φ E φ w j 0 = ( O 0 1 − t ) φ O φ w j 0 ( 这 里 为 了 便 于 书 写 , 用 O 来 代 替 O 0 1 ) \frac {\varphi_E} {\varphi_{w_{j_0}}} = (O_0^1 - t){\frac {\varphi_O} {\varphi_{w_{j_0}}}} \\ (这里为了便于书写,用O来代替O_0^1) φwj0φE=(O01t)φwj0φO(便OO01)
O = σ ( x ) φ E φ w j 0 = ( O − t ) φ σ ( x 0 1 ) φ ( w j 0 ) O = \sigma(x) \\ \frac {\varphi_E} {\varphi_{w_{j_0}}} = (O - t){\frac {\varphi_{\sigma(x_0^1)}} {\varphi_{(w_{j_0})}}} \\ O=σ(x)φwj0φE=(Ot)φ(wj0)φσ(x01)
φ E φ w j 0 = ( O − t ) φ σ ( x 0 1 ) φ ( x 0 1 ) φ ( x 0 1 ) φ σ ( w j 0 ) \frac {\varphi_E} {\varphi_{w_{j_0}}} = (O - t){\frac {\varphi_{\sigma(x_0^1)}} {\varphi_{(x_0^1)}}} {\frac {\varphi_{(x_0^1)}} {\varphi_{\sigma(w_{j_0})}}} φwj0φE=(Ot)φ(x01)φσ(x01)φσ(wj0)φ(x01)
φ E φ w j 0 = ( O − t ) σ ( x 0 1 ) ) ( 1 − σ ( x 0 1 ) ) ) φ ( x 0 1 ) φ σ ( w j 0 ) \frac {\varphi_E} {\varphi_{w_{j_0}}} = (O - t) \sigma(x_0^1))(1 - \sigma(x_0^1))){\frac {\varphi_{(x_0^1)}} {\varphi_{\sigma(w_{j_0})}}} φwj0φE=(Ot)σ(x01))(1σ(x01)))φσ(wj0)φ(x01)
( 根 据 线 性 关 系 ) x 0 1 = Σ w j 0 x j 0 φ E φ w j 0 = ( O − t ) σ ( x 0 1 ) ) ( 1 − σ ( x 0 1 ) ) ) x j 0 ( 所 有 变 量 都 为 已 知 , 求 出 梯 度 ) (根据线性关系 )\\ x_0^1 = \Sigma w_{j_0}x_j^0 \\ \frac {\varphi_E} {\varphi_{w_{j_0}}} = (O - t) \sigma(x_0^1))(1 - \sigma(x_0^1))) {x_j^0} \\ (所有变量都为已知,求出梯度) (线)x01=Σwj0xj0φwj0φE=(Ot)σ(x01))(1σ(x01)))xj0()

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值