产品出库顺序

本文详细介绍了两种常见的库存管理策略:先进先出(FIFO)和先进后出(LIFO)。通过具体的产品入库和出库流程,阐述了这两种策略在实际操作中的应用。先进先出策略确保最早入库的产品最先被销售,而先进后出策略则相反,最新入库的产品将被优先销售。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

产品出库顺序

先进先出(一般情况)

  • 产品abc入库信息如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 准备出库时(销售订单检查可用后):最先入库产品保留给移动到客户
    在这里插入图片描述
  • 调拨信息如下:
    在这里插入图片描述
  • 调拨后:最先入库产品位置发生相应改变
    在这里插入图片描述

先进后出(需设定)

  • 新建产品类别:强制下架策略选择Last In First Out
    在这里插入图片描述
  • 产品类别列表
    在这里插入图片描述
  • 在新建的列表下创建需设定先进后出产品
    在这里插入图片描述
  • 产品123入库信息如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 准备出库时(销售订单检查可用后):最先后库产品保留给移动到客户
    在这里插入图片描述
    在这里插入图片描述
  • 调拨信息如下:
    在这里插入图片描述
    调拨后:最后入库产品位置发生相应改变
    在这里插入图片描述
内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值