yoloV3代码详解(注释)

原文链接:https://www.cnblogs.com/hujinzhou/p/guobao_2020_3_13.html

yolo3各部分代码详解(超详细)
        </h1>
        <div class="clear"></div>
        <div class="postBody">
            
<div id="cnblogs_post_description" style="display: none">
    yolo3各部分代码详解(超详细),各个函数的解析
</div>

0.摘要

     最近一段时间在学习yolo3,看了很多博客,理解了一些理论知识,但是学起来还是有些吃力,之后看了源码,才有了更进一步的理解。在这里,我不在赘述网络方面的代码,网络方面的代码比较容易理解,下面将给出整个yolo3代码的详解解析,整个源码中函数的作用以及调用关系见下图:

 

参考:https://blog.csdn.net/weixin_41943311/article/details/95672137?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

 

 

 

1.model.py

1.1 yolo_head()

      yolo_head()函数的输入是Darknet53的最后输出的三个特征图feats,anchors,num_class,input_shpe,此函数的功能是将特征图的进行解码,这一步极为重要,如其中一个特征图的shape是(13,13,255),其实质就是对应着(13,13,3,85),分别对应着13*13个网格,每个网格3个anchors,85=(x,y,w,h,confident),此时box的xy是相对于网格的偏移量,所以还需要经过一些列的处理,处理方式见下图:

 

 

 

 

 

 

 

 

 

 

 

 

 

复制代码
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)#num_anchors=3
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
    #anchors=anchors[anchors_mask[1]]=anchors[[6,7,8]]= [116,90],  [156,198],  [373,326]
    """#通过arange、reshape、tile的组合,根据grid_shape(13x13、26x26或52x52)创建y轴的0~N-1的组合grid_y,再创建x轴的0~N-1的组合grid_x,将两者拼接concatenate,形成NxN的grid(13x13、26x26或52x52)"""
    grid_shape = K.shape(feats)[1:3] # height, width,#13x13或26x26或52x52
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))
    #cast函数用法:cast(x, dtype, name=None),x:待转换的张量,type:需要转换成什么类型
    """grid形式:(0,0),(0,1),(0,2)......(1,0),(1,1).....(12,12)"""
    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
    """(batch_size,13,13,3,85)"""
    "此时的xy为中心坐标,相对于左上角的中心坐标"
<span style="color: #008000;">#</span><span style="color: #008000;"> Adjust preditions to each spatial grid point and anchor size.</span>
<span style="color: #800000;">"""</span><span style="color: #800000;">将预测值调整为真实值</span><span style="color: #800000;">"""</span>
<span style="color: #800000;">"</span><span style="color: #800000;">将中心点相对于网格的坐标转换成在整张图片中的坐标,相对于13/26/52的相对坐标</span><span style="color: #800000;">"</span>
<span style="color: #800000;">"</span><span style="color: #800000;">将wh转换成预测框的wh,并处以416归一化</span><span style="color: #800000;">"</span><span style="color: #000000;">
box_xy </span>= (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))<span style="color: #008000;">#</span><span style="color: #008000;">实际上就是除以13或26或52</span>
<span style="color: #008000;">#</span><span style="color: #008000;">box_xy = (K.sigmoid(feats[:,:,:,:2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))</span>
<span style="color: #008000;">#</span><span style="color: #008000;"> ...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;</span>
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1<span style="color: #000000;">], K.dtype(feats))
box_confidence </span>= K.sigmoid(feats[..., 4:5<span style="color: #000000;">])
box_class_probs </span>= K.sigmoid(feats[..., 5<span style="color: #000000;">:])
</span><span style="color: #008000;">#</span><span style="color: #008000;">切片省略号的用法,省略前面左右的冒号,参考博客:https://blog.csdn.net/z13653662052/article/details/78010654?depth_1-utm_source=distribute.pc_relevant.none-task&amp;utm_source=distribute.pc_relevant.none-task</span>

<span style="color: #0000ff;">if</span> calc_loss ==<span style="color: #000000;"> True:
    </span><span style="color: #0000ff;">return</span><span style="color: #000000;"> grid, feats, box_xy, box_wh
</span><span style="color: #0000ff;">return</span><span style="color: #000000;"> box_xy, box_wh, box_confidence, box_class_probs
</span><span style="color: #008000;">#</span><span style="color: #008000;">预测框相对于整张图片中心点的坐标与预测框的wh</span></pre>
复制代码

 

1.2 yolo_correct_box()

     此函数的功能是将yolo_head()输出,也即是box相对于整张图片的中心坐标转换成box的左上角右下角的坐标

复制代码
 1 def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
 2     '''Get corrected boxes'''
 3     '''对上面函数输出的预测的坐标进行修正
 4     比如
 5     image_shape
 6     为[600,800],input_shape
 7     为[300, 500],那么
 8     new_shape
 9     为[300, 400]
10 
11     offset
12     为[0, 0.125]
13     scales
14     为[0.5, 0.625]'''
15 
16 
17     # 将box_xy, box_wh转换为输入图片上的真实坐标,输出boxes是框的左下、右上两个坐标(y_min, x_min, y_max, x_max)
18     # ...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;
19     # np.array[i:j:s],当s<0时,i缺省时,默认为-1;j缺省时,默认为-len(a)-1;所以array[::-1]相当于array[-1:-len(a)-1:-1],也就是从最后一个元素到第一个元素复制一遍,即倒序
20     box_yx = box_xy[..., ::-1]#将xy坐标进行交换,反序(y,x)
21     box_hw = box_wh[..., ::-1]
22     input_shape = K.cast(input_shape, K.dtype(box_yx))
23     image_shape = K.cast(image_shape, K.dtype(box_yx))
24     new_shape = K.round(image_shape * K.min(input_shape/image_shape))
25     #.round用于取近似值,保留几位小数,第一个参数是一个浮点数,第二个参数是保留的小数位数,可选,如果不写的话默认保留到整数
26     offset = (input_shape-new_shape)/2./input_shape
27     scale = input_shape/new_shape
28     box_yx = (box_yx - offset) * scale
29     box_hw *= scale
30     """获得预测框的左上角与右下角的坐标"""
31     box_mins = box_yx - (box_hw / 2.)
32     box_maxes = box_yx + (box_hw / 2.)
33     boxes =  K.concatenate([
34         box_mins[..., 0:1],  # y_min
35         box_mins[..., 1:2],  # x_min
36         box_maxes[..., 0:1],  # y_max
37         box_maxes[..., 1:2]  # x_max
38     ])#...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;
39 
40     # Scale boxes back to original image shape.
41     boxes *= K.concatenate([image_shape, image_shape])
42     return boxes#得到预测框的左下角坐标与右上角坐标
复制代码

1.3 yolo_box_and_score

     获得box与得分

复制代码
1 def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
2     '''Process Conv layer output'''
3     box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,
4         anchors, num_classes, input_shape)
5     boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
6     boxes = K.reshape(boxes, [-1, 4])#reshape,将不同网格的值转换为框的列表。即(?,13,13,3,4)->(?,4)  ?:框的数目
7     box_scores = box_confidence * box_class_probs
8     box_scores = K.reshape(box_scores, [-1, num_classes])#reshape,将框的得分展平,变为(?,80); ?:框的数目
9     return boxes, box_scores#返回预测框的左下角与右上角的坐标与得分
复制代码

 

1.4  yolo_eval()

       此函数的作用是删除冗余框,保留最优框,用到非极大值抑制算法

 

复制代码
 1 def yolo_eval(yolo_outputs,
 2               anchors,
 3               num_classes,
 4               image_shape,
 5               max_boxes=20,
 6               score_threshold=.6,
 7               iou_threshold=.5):
 8     """Evaluate YOLO model on given input and return filtered boxes."""
 9     """      yolo_outputs        #模型输出,格式如下【(?,13,13,255)(?,26,26,255)(?,52,52,255)】 ?:bitch size; 13-26-52:多尺度预测; 255:预测值(3*(80+5))
10               anchors,            #[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198),(373,326)]
11               num_classes,     # 类别个数,coco集80类
12               image_shape,        #placeholder类型的TF参数,默认(416, 416);
13               max_boxes=20,       #每张图每类最多检测到20个框同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值
14               score_threshold=.6, #框置信度阈值,小于阈值的框被删除,需要的框较多,则调低阈值,需要的框较少,则调高阈值;
15               iou_threshold=.5):  #同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值"""
16     num_layers = len(yolo_outputs)# #yolo的输出层数;num_layers = 3  -> 13-26-52
17     anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting
18     # 每层分配3个anchor box.如13*13分配到[6,7,8]即[(116,90)(156,198)(373,326)]
19     input_shape = K.shape(yolo_outputs[0])[1:3] * 32
20     # 输入shape(?,13,13,255);即第一维和第二维分别*32  ->13*32=416; input_shape:(416,416)
21     #yolo_outputs=[(batch_size,13,13,255),(batch_size,26,26,255),(batch_size,52,52,255)]
22     #input_shape=416*416
23     boxes = []
24     box_scores = []
25     for l in range(num_layers):
26         _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
27             anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
28         boxes.append(_boxes)
29         box_scores.append(_box_scores)
30     boxes = K.concatenate(boxes, axis=0)
31     box_scores = K.concatenate(box_scores, axis=0) #K.concatenate:将数据展平 ->(?,4)
32 
33     #可能会产生很多个预选框,需要经过(1)阈值的删选,(2)非极大值抑制的删选
34     mask = box_scores >= score_threshold#得分大于置信度为True,否则为Flase
35     max_boxes_tensor = K.constant(max_boxes, dtype='int32')
36     boxes_ = []
37     scores_ = []
38     classes_ = []
39     """
40     # ---------------------------------------#
41     #   1、取出每一类得分大于score_threshold
42     #   的框和得分
43     #   2、对得分进行非极大抑制
44     # ---------------------------------------#
45     # 对每一个类进行判断"""
46     for c in range(num_classes):
47         # TODO: use keras backend instead of tf.
48         class_boxes = tf.boolean_mask(boxes, mask[:, c])#将输入的数组挑出想要的数据输出,将得分大于阈值的坐标挑选出来
49         #将第c类中得分大于阈值的坐标挑选出来
50         class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
51         # 将第c类中得分大于阈值的框挑选出来
52         """非极大值抑制部分"""
53         # 非极大抑制,去掉box重合程度高的那一些
54         """原理:(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;
55 
56                 (2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。
57 
58                 (3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。
59 
60                 就这样一直重复,找到所有被保留下来的矩形框。"""
61         nms_index = tf.image.non_max_suppression(
62             class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
63         class_boxes = K.gather(class_boxes, nms_index)
64         class_box_scores = K.gather(class_box_scores, nms_index)
65         classes = K.ones_like(class_box_scores, 'int32') * c#将class_box_scores中的数变成1
66         boxes_.append(class_boxes)
67         scores_.append(class_box_scores)
68         classes_.append(classes)
69     boxes_ = K.concatenate(boxes_, axis=0)
70     scores_ = K.concatenate(scores_, axis=0)
71     classes_ = K.concatenate(classes_, axis=0)
72     #return 经过非极大值抑制保留下来的一个框
73 
74     return boxes_, scores_, classes_
复制代码

 

1.5  preprocess_true_box()

复制代码
  1 def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
  2     '''
  3     在preprocess_true_boxes中,输入:
  4 
  5     true_boxes:检测框,批次数16,最大框数20,每个框5个值,4个边界点和1个类别序号,如(16, 20, 5);
  6     input_shape:图片尺寸,如(416, 416);
  7     anchors:anchor box列表;
  8     num_classes:类别的数量;
  9     Preprocess true boxes to training input format
 10 
 11     Parameters
 12     ----------
 13     true_boxes: array, shape=(m, T, 5)
 14         Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
 15     input_shape: array-like, hw, multiples of 32
 16     anchors: array, shape=(N, 2), wh
 17     num_classes: integer
 18 
 19     Returns
 20     -------
 21     y_true: list of array, shape like yolo_outputs, xywh are reletive value
 22 
 23     '''
 24     # 检查有无异常数据 即txt提供的box id 是否存在大于 num_class的情况
 25     # true_boxes.shape  = (图片张数,每张图片box个数,5)(5是左上右下点坐标加上类别下标)
 26     assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
 27     num_layers = len(anchors)//3 # default setting
 28     anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
 29 
 30     true_boxes = np.array(true_boxes, dtype='float32')
 31     input_shape = np.array(input_shape, dtype='int32')    # [416 416] shape(2,)
 32     # 将每个box的左上点和右下点坐标相加除2,即取中点!
 33     """计算true_boxes:
 34 
 35        true_boxes:真值框,左上和右下2个坐标值和1个类别,如[184, 299, 191, 310, 0.0],结构是(16, 20, 5),16是批次数,20是框的最大数,5是框的5个值;
 36        boxes_xy:xy是box的中心点,结构是(16, 20, 2);
 37        boxes_wh:wh是box的宽和高,结构也是(16, 20, 2);
 38        input_shape:输入尺寸416x416;
 39        true_boxes:第0和1位设置为xy,除以416,归一化,第2和3位设置为wh,除以416,归一化,如[0.449, 0.730, 0.016, 0.026, 0.0]。"""
 40     boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
 41     # 得到box宽高
 42     boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
 43     # 中心坐标 和 宽高 都变成 相对于input_shape的比例
 44     true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
 45     true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]
 46     # 这个m应该是batch的大小 即是输入图片的数量
 47     m = true_boxes.shape[0]
 48     # grid_shape [13,13 ]   [26,26]  [52,52]
 49     grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
 50     #y_true是全0矩阵(np.zeros)列表,即[(16,13,13,3,6), (16,26,26,3,6), (16,52,52,3,6)]
 51     y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
 52         dtype='float32') for l in range(num_layers)]
 53     # y_true  m*13*13*3*(5+num_clasess)
 54     #         m*26*26*3*(5+num_classes)
 55     #         m*52*52*3*(5+num_classes)
 56     # Expand dim to apply broadcasting.
 57 
 58     # Expand dim to apply broadcasting.
 59     #在原先axis出添加一个维度,由(9,2)转为(1,9,2)
 60     anchors = np.expand_dims(anchors, 0)
 61     # 网格中心为原点(即网格中心坐标为 (0,0) ), 计算出anchor 右下角坐标
 62     anchor_maxes = anchors / 2.
 63     #计算出左上标
 64     anchor_mins = -anchor_maxes
 65     # 去掉异常数据
 66     valid_mask = boxes_wh[..., 0]>0
 67 
 68     for b in range(m):
 69         # Discard zero rows.
 70         wh = boxes_wh[b, valid_mask[b]]
 71         if len(wh)==0: continue
 72         # Expand dim to apply broadcasting.
 73         wh = np.expand_dims(wh, -2)
 74         box_maxes = wh / 2.
 75         box_mins = -box_maxes
 76         # # 假设 bouding box 的中心也位于网格的中心
 77 
 78         """计算标注框box与anchor box的iou值,计算方式很巧妙:
 79 
 80         box_mins的shape是(7,1,2),anchor_mins的shape是(1,9,2),intersect_mins的shape是(7,9,2),即两两组合的值;
 81         intersect_area的shape是(7,9);
 82         box_area的shape是(7,1);
 83         anchor_area的shape是(1,9);
 84         iou的shape是(7,9);
 85         IoU数据,即anchor box与检测框box,两两匹配的iou值"""
 86         intersect_mins = np.maximum(box_mins, anchor_mins)#逐位比较
 87         intersect_maxes = np.minimum(box_maxes, anchor_maxes)
 88         intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
 89         intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]#宽*高
 90         box_area = wh[..., 0] * wh[..., 1]
 91         anchor_area = anchors[..., 0] * anchors[..., 1]
 92         iou = intersect_area / (box_area + anchor_area - intersect_area)
 93 
 94         # Find best anchor for each true box
 95         best_anchor = np.argmax(iou, axis=-1)
 96 
 97         """设置y_true的值:
 98 
 99            t是box的序号;n是最优anchor的序号;l是层号;
100            如果最优anchor在层l中,则设置其中的值,否则默认为0;
101            true_boxes是(16, 20, 5),即批次、box数、框值;
102            true_boxes[b, t, 0],其中b是批次序号、t是box序号,第0位是x,第1位是y;
103            grid_shapes是3个检测图的尺寸,将归一化的值,与框长宽相乘,恢复为具体值;
104            k是在anchor box中的序号;
105            c是类别,true_boxes的第4位;
106            将xy和wh放入y_true中,将y_true的第4位框的置信度设为1,将y_true第5~n位的类别设为1;"""
107         for t, n in enumerate(best_anchor):
108             # 遍历anchor 尺寸 3个尺寸
109             # 因为此时box 已经和一个anchor box匹配上,看这个anchor box属于那一层,小,中,大,然后将其box分配到那一层
110             for l in range(num_layers):
111                 if n in anchor_mask[l]:
112                     #因为grid_shape格式是hw所以是x*grid_shapes[l][1]=x*w,求出对应所在网格的横坐标,这里的x是相对于整张图片的相对坐标,
113                     # 是在原先坐标上除以了w,所以现在要乘以w
114                     i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')
115                     #np.around 四舍五入
116                     #np.floor向下取整
117                     #np.ceil向上取整
118                     #np.where条件选取
119                     # np.floor 返回不大于输入参数的最大整数。 即对于输入值 x ,将返回最大的整数 i ,使得 i <= x。
120                     # true_boxes x,y,w,h, 此时x y w h都是相对于整张图像的
121                     # 第b个图像 第 t个 bounding box的 x 乘以 第l个grid shap的x(grid shape 格式是hw,
122                     # 因为input_shape格式是hw)
123                     # 找到这个bounding box落在哪个cell的中心
124                     #i,j是所在网格的位置
125                     j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')
126                     # 找到n 在 anchor_box的索引位置
127                     k = anchor_mask[l].index(n)
128                     # 得到box的id
129                     c = true_boxes[b,t, 4].astype('int32')
130                     # 第b个图像 第j行 i列 第k个anchor x,y,w,h,confindence,类别概率
131                     y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]
132                     y_true[l][b, j, i, k, 4] = 1
133                     # 置信度是1 因为含有目标
134                     y_true[l][b, j, i, k, 5+c] = 1
135                     # 类别的one-hot编码
136 
137     return y_true
复制代码

1.6 yolo_loss

      此函数定义损失函数,损失函数包括三个部分,坐标损失,置信度损失,类别损失:

 

 

 

复制代码
 1 def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
 2     """true_boxes : 实际框的位置和类别,我们的输入。三个维度:
 3     第一个维度:图片张数
 4     第二个维度:一张图片中有几个实际框
 5     第三个维度: [x, y, w, h, class],x,y 是实际框的中心点坐标,w,h 是框的宽度和高度。x,y,w,h 均是除以图片分辨率得到的[0,1]范围的值。
 6     anchors : 实际anchor boxes 的值,论文中使用了五个。[w,h],都是相对于gird cell 长宽的比值。二个维度:
 7     第一个维度:anchor boxes的数量,这里是5
 8     第二个维度:[w,h],w,h,都是相对于gird cell 长宽的比值。
 9     """
10     '''Return yolo_loss tensor
11 
12     Parameters
13     ----------
14     yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
15     y_true: list of array, the output of preprocess_true_boxes
16     anchors: array, shape=(N, 2), wh
17     num_classes: integer
18     ignore_thresh: float, the iou threshold whether to ignore object confidence loss
19 
20     Returns
21     -------
22     loss: tensor, shape=(1,)
23 
24     '''
25     num_layers = len(anchors)//3 # default setting
26     yolo_outputs = args[:num_layers]
27     y_true = args[num_layers:]
28     anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
29     input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
30     grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
31     loss = 0
32     m = K.shape(yolo_outputs[0])[0] # batch size, tensor
33     mf = K.cast(m, K.dtype(yolo_outputs[0]))
34 
35     for l in range(num_layers):
36         object_mask = y_true[l][..., 4:5]#置信度
37         true_class_probs = y_true[l][..., 5:]#类别
38 
39         grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
40              anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)
41         pred_box = K.concatenate([pred_xy, pred_wh])
42 
43         # Darknet raw box to calculate loss.
44         # 这是对x,y,w,b转换公式的反变换
45         raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid
46         raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])
47         # 这部操作是避免出现log(0) = 负无穷,故当object_mask置信率接近0是返回全0结果
48         # K.switch(条件函数,返回值1,返回值2)其中1,2要等shape
49         raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf
50         #提升针对小物体的小技巧:针对 YOLOv3来说,regression损失会乘一个(2-w*h)的比例系数,
51         # w 和 h 分别是ground truth 的宽和高。如果不减去 w*h,AP 会有一个明显下降。如果继续往上加,如 (2-w*h)*1.5,总体的 AP 还会涨一个点左右(包括验证集和测试集),大概是因为 COCO 中小物体实在太多的原因。
52 
53         box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]
54 
55         # Find ignore mask, iterate over each of batch.
56         ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
57         object_mask_bool = K.cast(object_mask, 'bool')
58         ##将真实标定的数据置信率转换为T or F的掩膜
59 
60         def loop_body(b, ignore_mask):
61             true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])#挑选出置信度大于0的框的相应的坐标,truebox形式为中心坐标xy与hw
62 
63             iou = box_iou(pred_box[b], true_box)#计算iou,pre_box是通过yolo_head解码之后的xywh
64             best_iou = K.max(iou, axis=-1)#选取最大iou的
65             ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))
66             return b+1, ignore_mask
67         _, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])
68         ignore_mask = ignore_mask.stack()#将一个列表中维度数目为R的张量堆积起来形成维度为R+1的新张量
69         ignore_mask = K.expand_dims(ignore_mask, -1)
70 
71         # K.binary_crossentropy is helpful to avoid exp overflow.
72         xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)
73         wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])
74         confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \
75             (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
76         class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)
77 
78         xy_loss = K.sum(xy_loss) / mf
79         wh_loss = K.sum(wh_loss) / mf
80         confidence_loss = K.sum(confidence_loss) / mf
81         class_loss = K.sum(class_loss) / mf
82         loss += xy_loss + wh_loss + confidence_loss + class_loss
83         if print_loss:
84             loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')
85     return loss
复制代码

2.train.py

整个训练分为两个阶段,第一个阶段为0~50epoch,训练最后的loss层,前面的层被冻结,第二个阶段为50~100个epoch训练前面的层

复制代码
  1 def _main():
  2     annotation_path = '2007_train.txt'
  3     log_dir = 'logs/000/'
  4     classes_path = 'model_data/voc_classes.txt'
  5     anchors_path = 'model_data/yolo_anchors.txt'
  6     class_names = get_classes(classes_path)
  7     num_classes = len(class_names)
  8     anchors = get_anchors(anchors_path)
  9 
 10     input_shape = (416,416) # multiple of 32, hw
 11 
 12     is_tiny_version = len(anchors)==6 # default setting
 13     if is_tiny_version:
 14         model = create_tiny_model(input_shape, anchors, num_classes,
 15             freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5')
 16     else:
 17         model = create_model(input_shape, anchors, num_classes,
 18             freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
 19 
 20     logging = TensorBoard(log_dir=log_dir)
 21     checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
 22         monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
 23     reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
 24     """monitor:被监测的量
 25        factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
 26        patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
 27        mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
 28        epsilon:阈值,用来确定是否进入检测值的“平原区”
 29        cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
 30        min_lr:学习率的下限"""
 31     early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
 32     """monitor: 被监测的数据。
 33        min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
 34        patience: 没有进步的训练轮数,在这之后训练就会被停止。
 35        verbose: 详细信息模式。
 36        mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
 37        baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
 38        restore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重"""
 39 
 40     val_split = 0.1
 41     with open(annotation_path) as f:
 42         lines = f.readlines()
 43     np.random.seed(10101)
 44     np.random.shuffle(lines)
 45     np.random.seed(None)
 46     num_val = int(len(lines)*val_split)
 47     num_train = len(lines) - num_val
 48 
 49     # Train with frozen layers first, to get a stable loss.
 50     # Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
 51     if True:
 52         model.compile(optimizer=Adam(lr=1e-3), loss={
 53             # use custom yolo_loss Lambda layer.
 54             # # 使用定制的 yolo_loss Lambda层
 55             'yolo_loss': lambda y_true, y_pred: y_pred})
 56         #解释:模型compile时传递的是自定义的loss,而把loss写成一个层融合到model里面后,
 57         # y_pred就是loss。自定义损失函数规定要以y_true, y_pred为参数
 58 
 59         batch_size = 32
 60         print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
 61         model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
 62                 steps_per_epoch=max(1, num_train//batch_size),
 63                 validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
 64                 validation_steps=max(1, num_val//batch_size),
 65                 epochs=50,
 66                 initial_epoch=0,
 67                 callbacks=[logging, checkpoint])
 68         model.save_weights(log_dir + 'trained_weights_stage_1.h5')
 69 
 70     # Unfreeze and continue training, to fine-tune.
 71     # Train longer if the result is not good.
 72     if True:
 73         for i in range(len(model.layers)):
 74             model.layers[i].trainable = True
 75         model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
 76         print('Unfreeze all of the layers.')
 77 
 78         batch_size = 32 # note that more GPU memory is required after unfreezing the body
 79         print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
 80         model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
 81             steps_per_epoch=max(1, num_train//batch_size),
 82             validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
 83             validation_steps=max(1, num_val//batch_size),
 84             epochs=100,
 85             initial_epoch=50,
 86             callbacks=[logging, checkpoint, reduce_lr, early_stopping])
 87         model.save_weights(log_dir + 'trained_weights_final.h5')
 88 
 89     # Further training if needed.
 90 
 91 
 92 def get_classes(classes_path):
 93     '''loads the classes'''
 94     with open(classes_path) as f:
 95         class_names = f.readlines()
 96     class_names = [c.strip() for c in class_names]
 97     return class_names
 98 
 99 def get_anchors(anchors_path):
100     '''loads the anchors from a file'''
101     with open(anchors_path) as f:
102         anchors = f.readline()
103     anchors = [float(x) for x in anchors.split(',')]
104     return np.array(anchors).reshape(-1, 2)
105 
106 
107 def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
108             weights_path='model_data/yolo_weights.h5'):
109     '''create the training model'''
110     K.clear_session() # get a new session
111     image_input = Input(shape=(None, None, 3))
112     h, w = input_shape
113     num_anchors = len(anchors)
114 
115     y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
116         num_anchors//3, num_classes+5)) for l in range(3)]
117 
118     model_body = yolo_body(image_input, num_anchors//3, num_classes)
119     print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
120 
121     if load_pretrained:
122         model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
123         print('Load weights {}.'.format(weights_path))
124         """根据预训练权重的地址weights_path,加载权重文件,设置参数为,按名称对应by_name,
125            略过不匹配skip_mismatch;
126 
127            选择冻结模式:模式1是冻结185层,模式2是保留最底部3层,其余全部冻结。
128            整个模型共有252层;将所冻结的层,设置为不可训练,trainable=False;"""
129         if freeze_body in [1, 2]:
130             # Freeze darknet53 body or freeze all but 3 output layers.
131             num = (185, len(model_body.layers)-3)[freeze_body-1]
132             for i in range(num): model_body.layers[i].trainable = False
133             print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
134     """Lambda是Keras的自定义层,输入为model_body.output和y_true,输出output_shape是(1,),即一个损失值;
135 
136        自定义Lambda层的名字name为yolo_loss;
137 
138        层的参数是锚框列表anchors、类别数num_classes和IoU阈值ignore_thresh。
139        其中,ignore_thresh用于在物体置信度损失中过滤IoU较小的框;
140 
141        yolo_loss是损失函数的核心逻辑。"""
142     model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
143         arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
144         [*model_body.output, *y_true])
145     """把loss写成一个层,作为最后的输出,搭建模型的时候,就只需要将模型的output定义为loss
146     ,而compile的时候,直接将loss设置为y_pred(因为模型的输出就是loss,所以y_pred就是loss),
147     无视y_true,训练的时候,y_true随便扔一个符合形状的数组进去就行了"""
148     #keras.layer.Lambda将任意表达式封装为 Layer 对象
149     #keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None)
150     #function: 需要封装的函数。 将输入张量作为第一个参数。
151     # output_shape: 预期的函数输出尺寸。可以是元组或者函数。 如果是元组,它只指定第一个维度;
152     # arguments: 可选的。传递给函数function的关键字参数。
153 
154     model = Model([model_body.input, *y_true], model_loss)
155     #构建了以图片数据和图片标签(y_true)为输入,
156     # 模型损失(model_loss)为输出(y_pred)的模型 model。
157 
158     return model
159 
160 def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
161             weights_path='model_data/tiny_yolo_weights.h5'):
162     '''create the training model, for Tiny YOLOv3'''
163     K.clear_session() # get a new session
164     image_input = Input(shape=(None, None, 3))
165     h, w = input_shape
166     num_anchors = len(anchors)
167 
168     y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
169         num_anchors//2, num_classes+5)) for l in range(2)]
170 
171     model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
172     print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
173 
174     if load_pretrained:
175         model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
176         print('Load weights {}.'.format(weights_path))
177         if freeze_body in [1, 2]:
178             # Freeze the darknet body or freeze all but 2 output layers.
179             num = (20, len(model_body.layers)-2)[freeze_body-1]
180             for i in range(num): model_body.layers[i].trainable = False
181             print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
182 
183     model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
184         arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
185         [*model_body.output, *y_true])
186     model = Model([model_body.input, *y_true], model_loss)
187 
188     return model
189 
190 def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
191 
192     '''data generator for fit_generator
193         annotation_lines:标注数据的行,每行数据包含图片路径,和框的位置信息,种类
194         batch_size:每批图片的大小
195         input_shape: 图片的输入尺寸
196         anchors: 大小
197         num_classes: 类别数
198         '''
199 
200     n = len(annotation_lines)
201     i = 0
202     while True:
203         image_data = []
204         box_data = []
205         for b in range(batch_size):
206             if i==0:
207                 np.random.shuffle(annotation_lines)
208             image, box = get_random_data(annotation_lines[i], input_shape, random=True)#从标记的样本分离image与box,得到样本图片与样本label
209             image_data.append(image)
210             box_data.append(box)
211             i = (i+1) % n
212         image_data = np.array(image_data)
213         box_data = np.array(box_data)
214         y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
215         yield [image_data, *y_true], np.zeros(batch_size)
216 
217 def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):
218     n = len(annotation_lines)
219     if n==0 or batch_size<=0: return None
220     return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
221 
222 if __name__ == '__main__':
223     _main()
复制代码

3.utils.py

3.1 letter_image_box(),此函数的作用主要是将输入的图片进行等比例缩小,并在空余地方填成灰色

复制代码
 1 def letterbox_image(image, size):
 2     '''resize image with unchanged aspect ratio using padding'''
 3     iw, ih = image.size#图像初始的大小,任意值   以(1000,500)为例
 4     w, h = size #模型要求的(416,416)
 5     scale = min(w/iw, h/ih)#416/1000  0.416<0.832  ,416/500
 6     nw = int(iw*scale) #416/1000*1000=416
 7     nh = int(ih*scale)#416/1000*400=208
 8 
 9     image = image.resize((nw,nh), Image.BICUBIC)
10     new_image = Image.new('RGB', size, (128,128,128))#new : 这个函数创建一幅给定模式(mode)和尺寸(size)的图片。如果省略 color 参数,则创建的图片被黑色填充满,
11                                                      # 如果 color 参数是 None 值,则图片还没初始化
12     new_image.paste(image, ((w-nw)//2, (h-nh)//2)) #w-nw=0,(h-nh)//2=(416-208)//2=108
13     return new_image
复制代码

它的作用如下:

 

 

 

3.2 get_random_data()

此函数的功能主要是进行数据增强与输入图像预处理(同letter_image_box)

复制代码
  1 def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):
  2     '''random preprocessing for real-time data augmentation
  3     annotation_lines:标注数据的行,每行数据包含图片路径,和框的位置信息,种类
  4     return:imagedata是经过resize并填充的样本图片,resize成(416,416),并填充灰度
  5            boxdata是每张image中做的标记label,shpe,对应着truebox,批次数16,最大框数20,每个框5个值,4个边界点和1个类别序号,如(16, 20, 5)
  6            为(,batchsize,maxbox,5),每张图片最多的有maxbox个类,5为左上右下的坐标'''
  7     line = annotation_line.split()#删除空格
  8     image = Image.open(line[0])
  9     iw, ih = image.size
 10     h, w = input_shape#(416,416)
 11     box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
 12 
 13     if not random:
 14         # resize image
 15         #将图片等比例转换为416x416的图片,其余用灰色填充,
 16         # 即(128, 128, 128),同时颜色值转换为0~1之间,即每个颜色值除以255;
 17 
 18 
 19         scale = min(w/iw, h/ih)
 20         nw = int(iw*scale)
 21         nh = int(ih*scale)
 22         dx = (w-nw)//2
 23         dy = (h-nh)//2
 24         image_data=0
 25         if proc_img:
 26             image = image.resize((nw,nh), Image.BICUBIC)
 27             new_image = Image.new('RGB', (w,h), (128,128,128))
 28             new_image.paste(image, (dx, dy))
 29             image_data = np.array(new_image)/255.
 30             # 上面的作用和letter_box一致,加了一个把rgb范围变成0-1
 31             # correct boxes   max_boxes=20
 32 
 33         # correct boxes
 34         # 将边界框box等比例缩小,再加上填充的偏移量dx和dy,因为新的图片部分用灰色填充,影
 35         # 响box的坐标系,box最多有max_boxes个,即20个
 36         box_data = np.zeros((max_boxes,5))#shap->(20,5)
 37         if len(box)>0:
 38             np.random.shuffle(box)
 39             if len(box)>max_boxes: box = box[:max_boxes]
 40             box[:, [0,2]] = box[:, [0,2]]*scale + dx
 41             box[:, [1,3]] = box[:, [1,3]]*scale + dy
 42             box_data[:len(box)] = box
 43 
 44         return image_data, box_data
 45 
 46     # resize image
 47     #通过jitter参数,随机计算new_ar和scale,生成新的nh和nw,
 48     # 将原始图像随机转换为nw和nh尺寸的图像,即非等比例变换图像。
 49     #也即是数据增强
 50     new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
 51     scale = rand(.25, 2)
 52     if new_ar < 1:
 53         nh = int(scale*h)
 54         nw = int(nh*new_ar)
 55     else:
 56         nw = int(scale*w)
 57         nh = int(nw/new_ar)
 58     image = image.resize((nw,nh), Image.BICUBIC)
 59 
 60     # place image
 61     dx = int(rand(0, w-nw))
 62     dy = int(rand(0, h-nh))
 63     new_image = Image.new('RGB', (w,h), (128,128,128))
 64     new_image.paste(image, (dx, dy))
 65     image = new_image
 66 
 67     # flip image or not
 68     #根据随机数flip,随机左右翻转FLIP_LEFT_RIGHT图片
 69     flip = rand()<.5
 70     if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
 71 
 72     # distort image
 73     #在HSV坐标域中,改变图片的颜色范围,hue值相加,sat和vat相乘,
 74     # 先由RGB转为HSV,再由HSV转为RGB,添加若干错误判断,避免范围过大
 75     hue = rand(-hue, hue)
 76     sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
 77     val = rand(1, val) if rand()<.5 else 1/rand(1, val)
 78     x = rgb_to_hsv(np.array(image)/255.)
 79     x[..., 0] += hue
 80     x[..., 0][x[..., 0]>1] -= 1
 81     x[..., 0][x[..., 0]<0] += 1
 82     x[..., 1] *= sat
 83     x[..., 2] *= val
 84     x[x>1] = 1
 85     x[x<0] = 0
 86     image_data = hsv_to_rgb(x) # numpy array, 0 to 1
 87 
 88     # correct boxes
 89     #将所有的图片变换,增加至检测框中,并且包含若干异常处理,避免变换之后的值过大或过小,去除异常的box
 90     box_data = np.zeros((max_boxes,5))
 91     if len(box)>0:
 92         np.random.shuffle(box)
 93         box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
 94         box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
 95         if flip: box[:, [0,2]] = w - box[:, [2,0]]
 96         box[:, 0:2][box[:, 0:2]<0] = 0
 97         box[:, 2][box[:, 2]>w] = w
 98         box[:, 3][box[:, 3]>h] = h
 99         box_w = box[:, 2] - box[:, 0]
100         box_h = box[:, 3] - box[:, 1]
101         box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
102         if len(box)>max_boxes: box = box[:max_boxes]
103         box_data[:len(box)] = box
104 
105     return image_data, box_data
复制代码

4.yolo.py()

此函数主要用于检测图片或者视频

复制代码
  1     def generate(self):
  2         """①加载权重参数文件,生成检测框,得分,以及对应类别
  3 
  4           ②利用model.py中的yolo_eval函数生成检测框,得分,所属类别
  5 
  6           ③初始化时调用generate函数生成图片的检测框,得分,所属类别(self.boxes, self.scores, self.classes)"""
  7         model_path = os.path.expanduser(self.model_path)
  8         assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
  9 
 10         # Load model, or construct model and load weights.
 11         num_anchors = len(self.anchors)
 12         num_classes = len(self.class_names)
 13         is_tiny_version = num_anchors==6 # default setting
 14         try:
 15             self.yolo_model = load_model(model_path, compile=False)
 16         except:
 17             self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
 18                 if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
 19             self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
 20         else:
 21             ##[-1]:网络最后一层输出。 output_shape[-1]:输出维度的最后一维。 -> (?,13,13,255)
 22             # 255 = 9/3*(80+5). 9/3:每层特征图对应3个anchor box  80:80个类别 5:4+1,框的4个值+1个置信度
 23 
 24             assert self.yolo_model.layers[-1].output_shape[-1] == \
 25                 num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
 26                 'Mismatch between model and given anchor and class sizes'
 27             #Python assert(断言)用于判断一个表达式,在表达式条件为 false 的时候触发异常。
 28 
 29             #断言可以在条件不满足程序运行的情况下直接返回错误,而不必等待程序运行后出现崩溃的情况
 30 
 31         print('{} model, anchors, and classes loaded.'.format(model_path))
 32 
 33         # Generate colors for drawing bounding boxes.
 34         # Generate colors for drawing bounding boxes.
 35         # 生成绘制边框的颜色。
 36         # h(色调):x/len(self.class_names)  s(饱和度):1.0  v(明亮):1.0
 37 
 38         # 对于80种coco目标,确定每一种目标框的绘制颜色,即:将(x/80, 1.0, 1.0)的颜色转换为RGB格式,并随机调整颜色以便于肉眼识别,
 39         # 其中:一个1.0表示饱和度,一个1.0表示亮度
 40 
 41         hsv_tuples = [(x / len(self.class_names), 1., 1.)
 42                       for x in range(len(self.class_names))]
 43         self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) #hsv转换为rgb
 44         # hsv取值范围在【0,1】,而RBG取值范围在【0,255】,所以乘上255
 45         self.colors = list(
 46             map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
 47                 self.colors))
 48         np.random.seed(10101)  # Fixed seed for consistent colors across runs.
 49         np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
 50         np.random.seed(None)  # Reset seed to default.
 51 
 52         # Generate output tensor targets for filtered bounding boxes.
 53         #为过滤的边界框生成输出张量目标
 54         self.input_image_shape = K.placeholder(shape=(2, ))
 55         if self.gpu_num>=2:
 56             self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
 57         boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
 58                 len(self.class_names), self.input_image_shape,
 59                 score_threshold=self.score, iou_threshold=self.iou)
 60         return boxes, scores, classes
 61 
 62     def detect_image(self, image):
 63         """开始计时->①调用letterbox_image函数,即:先生成一个用“绝对灰”R128-G128-B128填充的416×416新图片,然后用按比例缩放(采样方式:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色。②model_image_size定义的宽和高必须是32的倍数;若没有定义model_image_size,将输入的尺寸调整为32的倍数,并调用letterbox_image函数进行缩放。③将缩放后的图片数值除以255,做归一化。④将(416,416,3)数组调整为(1,416,416,3)元祖,满足网络输入的张量格式:image_data。
 64 
 65         ->①运行self.sess.run()输入参数:输入图片416×416,学习模式0测试/1训练。
 66         self.yolo_model.input: image_data,self.input_image_shape: [image.size[1], image.size[0]],
 67         K.learning_phase(): 0。②self.generate(),读取:model路径、anchor box、coco类别、加载模型yolo.h5.,对于80中coco目标,确定每一种目标框的绘制颜色,即:将(x/80,1.0,1.0)的颜色转换为RGB格式,并随机调整颜色一遍肉眼识别,其中:一个1.0表示饱和度,一个1.0表示亮度。③若GPU>2调用multi_gpu_model()
 68 
 69          ->①yolo_eval(self.yolo_model.output),max_boxes=20,每张图没类最多检测20个框。
 70          ②将anchor_box分为3组,分别分配给三个尺度,yolo_model输出的feature map
 71          ③特征图越小,感受野越大,对大目标越敏感,选大的anchor box->
 72          分别对三个feature map运行out_boxes, out_scores, out_classes,返回boxes、scores、classes。
 73          """
 74         start = timer()
 75         # # 调用letterbox_image()函数,即:先生成一个用“绝对灰”R128-G128-B128“填充的416x416新图片,
 76         # 然后用按比例缩放(采样方法:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色
 77 
 78         if self.model_image_size != (None, None):  #判断图片是否存在
 79             assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
 80             assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
 81             # assert断言语句的语法格式 model_image_size[0][1]指图像的w和h,且必须是32的整数倍
 82             boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
 83             # #letterbox_image对图像调整成输入尺寸(w,h)
 84         else:
 85             new_image_size = (image.width - (image.width % 32),
 86                               image.height - (image.height % 32))
 87             boxed_image = letterbox_image(image, new_image_size)
 88         image_data = np.array(boxed_image, dtype='float32')
 89 
 90         print(image_data.shape)#(416,416,3)
 91         image_data /= 255.#将缩放后图片的数值除以255,做归一化
 92         image_data = np.expand_dims(image_data, 0)  # Add batch dimension.
 93         # 批量添加一维 -> (1,416,416,3) 为了符合网络的输入格式 -> (bitch, w, h, c)
 94 
 95         out_boxes, out_scores, out_classes = self.sess.run(
 96             [self.boxes, self.scores, self.classes],
 97             feed_dict={
 98                 self.yolo_model.input: image_data,#图像数据
 99                 self.input_image_shape: [image.size[1], image.size[0]],#图像尺寸416x416
100                 K.learning_phase(): 0#学习模式 0:测试模型。 1:训练模式
101             })#目的为了求boxes,scores,classes,具体计算方式定义在generate()函数内。在yolo.py第61行
102 
103         print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
104         # 绘制边框,自动设置边框宽度,绘制边框和类别文字,使用Pillow绘图库(PIL,头有声明)
105         # 设置字体
106 
107 
108         font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
109                     size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
110         # 设置目标框线条的宽度
111         thickness = (image.size[0] + image.size[1]) // 300#厚度
112         ## 对于c个目标类别中的每个目标框i,调用Pillow画图
113 
114         for i, c in reversed(list(enumerate(out_classes))):
115             predicted_class = self.class_names[c] #类别  #目标类别的名字
116             box = out_boxes[i]#框
117             score = out_scores[i]#置信度
118 
119             label = '{} {:.2f}'.format(predicted_class, score)
120             draw = ImageDraw.Draw(image)#创建一个可以在给定图像上绘图的对象
121             label_size = draw.textsize(label, font)##标签文字   #返回label的宽和高(多少个pixels)
122             #返回给定字符串的大小,以像素为单位。
123             top, left, bottom, right = box
124             # 目标框的上、左两个坐标小数点后一位四舍五入
125             """防止检测框溢出"""
126             top = max(0, np.floor(top + 0.5).astype('int32'))
127 
128             left = max(0, np.floor(left + 0.5).astype('int32'))
129             # 目标框的下、右两个坐标小数点后一位四舍五入,与图片的尺寸相比,取最小值
130             # 防止边框溢出
131             bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
132             right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
133             print(label, (left, top), (right, bottom))
134             # 确定标签(label)起始点位置:标签的左、下
135             if top - label_size[1] >= 0:
136                 text_origin = np.array([left, top - label_size[1]])
137             else:
138                 text_origin = np.array([left, top + 1])
139 
140             # My kingdom for a good redistributable image drawing library.
141             # 画目标框,线条宽度为thickness
142             for i in range(thickness):#画框
143                 draw.rectangle(
144                     [left + i, top + i, right - i, bottom - i],
145                     outline=self.colors[c])
146                 # 画标签框
147             draw.rectangle( #文字背景
148                 [tuple(text_origin), tuple(text_origin + label_size)],
149                 fill=self.colors[c])
150             # 填写标签内容
151             draw.text(text_origin, label, fill=(0, 0, 0), font=font)#文案
152             del draw
153 
154         end = timer()
155         print(end - start)
156         return image
157 
158     def close_session(self):
159         self.sess.close()
复制代码

 

以上即是主要yolo3的主要部分,下面将会对模型进行测试

5.测试

    在理解完原理与上述代码之后,下面进行测试(当然也可以不用理解源码也可以直接测试)

   (1) 首先需要下载yolo3.weights,下载地址:

  https://pjreddie.com/media/files/yolov3.weights
(2) 在pycharm的终端中输入python convert.py yolov3.cfg yolov3.weights model_data/yolo_weights.h5
作用是将yolo3.weights文件转换成Keras可以处理的.h5权值文件,
(3)随便在网上下载一张图片进行测试,比如笔者用一张飞机的照片
(4)在源码中,不能直接运行yolo.py,因为在此代码中没有if__name__=='__main__':
所以需要自己添加:
复制代码
 1 if __name__ == '__main__':
 2     """测试图片"""
 3     yolo = YOLO()
 4     path = r'F:\chorme_download\keras-yolo3-master\微信图片_20200313132254.jpg'
 5     try:
 6         image = Image.open(path)
 7     except:
 8         print('Open Error! Try again!')
 9     else:
10         r_image = yolo.detect_image(image)
11         r_image.show()
12 
13     yolo.close_session()
14     """测试视频,将detect_video中的path置0即调用自己电脑的摄像头"""
15     yolo=YOLO()
16     detect_video(yolo,0)
复制代码

6.结果

 

 

本文为原创,制作不易,转载请标明出处,谢谢!!!

 

<div id="blog_post_info">
0
0
<div class="clear"></div>
<div id="post_next_prev">

<a href="https://www.cnblogs.com/hujinzhou/p/12368926.html" class="p_n_p_prefix">« </a> 上一篇:    <a href="https://www.cnblogs.com/hujinzhou/p/12368926.html" title="发布于 2020-02-26 20:43">Keras框架下用.flow_from_directoryt自己构建数据集</a>
<br>
<a href="https://www.cnblogs.com/hujinzhou/p/12580599.html" class="p_n_p_prefix">» </a> 下一篇:    <a href="https://www.cnblogs.com/hujinzhou/p/12580599.html" title="发布于 2020-03-27 12:36">.npy文件的保存与加载</a>
posted @ 2020-03-13 20:02  控制工程小小白  阅读( 796)  评论( 0编辑  收藏
</div><!--end: topics 文章、评论容器-->
    <div id="google_ads_iframe_/1090369/C1_0__container__" style="border: 0pt none;"><iframe id="google_ads_iframe_/1090369/C1_0" title="3rd party ad content" name="google_ads_iframe_/1090369/C1_0" width="300" height="250" scrolling="no" marginwidth="0" marginheight="0" frameborder="0" srcdoc="" style="border: 0px; vertical-align: bottom;" data-google-container-id="1" data-load-complete="true"></iframe></div></div>
</div>
<div id="under_post_news"><div class="recomm-block"><b>相关博文:</b><br>·  <a title="Faster RCNN 学习笔记" href="https://www.cnblogs.com/wangyong/p/8513563.html" target="_blank" onclick="clickRecomItmem(8513563)">Faster RCNN 学习笔记</a><br>·  <a title="SSD详解" href="https://www.cnblogs.com/MY0213/p/9858383.html" target="_blank" onclick="clickRecomItmem(9858383)">SSD详解</a><br>·  <a title="『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&amp;损失函数" href="https://www.cnblogs.com/hellcat/p/9907837.html" target="_blank" onclick="clickRecomItmem(9907837)">『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&amp;损失函数</a><br>·  <a title="基于深度学习的目标检测算法:SSD——常见的目标检测算法" href="https://www.cnblogs.com/bonelee/p/9033952.html" target="_blank" onclick="clickRecomItmem(9033952)">基于深度学习的目标检测算法:SSD——常见的目标检测算法</a><br>·  <a title="(原)fasterrcnn的tensorflow代码的理解" href="https://www.cnblogs.com/darkknightzh/p/10043864.html" target="_blank" onclick="clickRecomItmem(10043864)">(原)fasterrcnn的tensorflow代码的理解</a><br>»  <a target="_blank" href="https://recomm.cnblogs.com/blogpost/12487445">更多推荐...</a></div></div>
<div id="cnblogs_c2" class="c_ad_block">
    <div id="div-gpt-ad-1592366332455-0" style="width: 468px; height: 60px;" data-google-query-id="CIWX9KC-teoCFQGXvAod2_AF6w">
        <script>
            if (!mobileVisit) {
                if (canShowAdsense()) {
                    googletag.cmd.push(function () { googletag.display('div-gpt-ad-1592366332455-0'); });
                } else {
                    $('#cnblogs_c2').hide();
                }
            }
        </script>
    <div id="google_ads_iframe_/1090369/C2_0__container__" style="border: 0pt none; width: 468px; height: 60px;"></div></div>
</div>
<div id="under_post_kb">
YOLOv3是一种目标检测算法,它在PyTorch框架下实现。你可以在GitHub上找到YOLOv3的PyTorch版本代码,地址是https://github.com/ultralytics/yolov3。这个代码库提供了一些教程和运行结果,但不一定能直接运行成功。你可以在同目录下新建一个.ipynb文件,并在其中运行代码"%run detect.py"来尝试运行。\[1\] 在代码解读方面,首先需要准备数据集和关键文件。然后,代码的大致流程包括数据与标签的读取、模型构造、前向传播和计算损失。具体来说,模型构造部分包括构建convolutional层、rout层和shortcut层,以及构建yolo层。\[2\] 如果你想深入了解YOLOv3的PyTorch版本代码,可以参考官方教程,地址是https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data。这个教程提供了更详细的训练自定义数据集的指导。\[3\] #### 引用[.reference_title] - *1* *3* [YOLOv3 Pytorch代码及原理分析(一):跑通代码](https://blog.csdn.net/weixin_43605641/article/details/107524168)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [YOLOV3 Pytorch版本代码解读](https://blog.csdn.net/Weary_PJ/article/details/128749270)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值