在上一篇文章中我们分析了用户的性别、年龄、会员类别,并得出了相关结论。但对于一个属于共享经济类别的业务,我们还需要更多的分析用户的行为习惯,从而使服务更加符合用户的需求。在这篇文章中,我们将分析用户的骑行时间和骑行速度。
1.分析用户的骑行时间
cb5=pd.DataFrame(pd.read_csv('201505-citibike-tripdata.csv'))#读取5月数据并创建数据表
time_split = pd.DataFrame((x.split(' ') for x in cb5.starttime),i ndex=cb5.index,columns=['start_date','star_time'])#对starttime字段进行分列
cb5=pd.merge(cb5,time_split,right_index=True, left_index=True)#对分列后的表与原数据表进行拼接
cb5['star_time']=pd.to_datetime(cb5['star_time'])#更改star_time字段为日期格式
cb5 = cb5.set_index('star_time')#设置star_time为表索引
#按小时对数据进行汇总
star_hour=cb5.resample('H',how=len)#按小时对数据进行汇总
ride_hour=star_hour["bikeid"]#提取按小时汇总的bikeid数据
plt.rc('font', family='STXihei', size=15)a=np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20