美国纽约州Citi Bike数据分析(3)------按骑行时间和骑行速度进行分析

本文深入分析Citi Bike用户骑行时间,揭示早晚高峰及中午使用情况,确认用户主要为上班族。此外,大部分用户骑行时长在10~20分钟,表明短途出行为主。尽管多数用户为年度会员,长时间骑行占比仍然较低。通过对骑行速度的估算,5月平均速度6.3公里/小时,推测高温天气影响骑行速度。商家可据此优化服务,如设计省力自行车。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇文章中我们分析了用户的性别、年龄、会员类别,并得出了相关结论。但对于一个属于共享经济类别的业务,我们还需要更多的分析用户的行为习惯,从而使服务更加符合用户的需求。在这篇文章中,我们将分析用户的骑行时间和骑行速度。

1.分析用户的骑行时间

cb5=pd.DataFrame(pd.read_csv('201505-citibike-tripdata.csv'))#读取5月数据并创建数据表 
time_split = pd.DataFrame((x.split(' ') for x in cb5.starttime),i ndex=cb5.index,columns=['start_date','star_time'])#对starttime字段进行分列
cb5=pd.merge(cb5,time_split,right_index=True, left_index=True)#对分列后的表与原数据表进行拼接 
cb5['star_time']=pd.to_datetime(cb5['star_time'])#更改star_time字段为日期格式
cb5 = cb5.set_index('star_time')#设置star_time为表索引 
#按小时对数据进行汇总
star_hour=cb5.resample('H',how=len)#按小时对数据进行汇总 
ride_hour=star_hour["bikeid"]#提取按小时汇总的bikeid数据

plt.rc('font', family='STXihei', size=15)a=np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值