美国纽约州Citi Bike数据分析(4)------相关性分析

在上一篇文章中,我们分析了用户的骑行时间,骑行时长,骑行速度,并得出了相关的结论。在数据分析中,最重要的事情之一就是进行相关性分析,我们都听说过啤酒与尿布的故事,这就是一个相关性分析的很好的例子。通过对事物的相关性分析,我们可以得出更加精准的预测,可以更加了解用户的行为,可以分析出用户的潜在需求并以此来优化服务。在本文中,我们将对骑行与气温,骑行速度与时间这两个条件进行相关性分析。

1.骑行与气温之间的相关性分析

在第一篇文章中,我们得出了这样一个结论:第一季度用户对Citi Bike的使用量最低,第三季度使用量最高。可以推测,骑行有明显的季节因素。下面我们导入纽约市2015年的气象数据,来看下天气因素与Citi Bike间是否存在关联,并试着用天气的变化来预测Citi Bike的使用量。


weather=pd.DataFrame(pd.read_csv('823248.csv'))#读取2015年纽约市的气象数据
group_weather_day=weather['TMAX'] #提取每日最高气温数据
cb_day=cb1.resample('D',how=len)#对2015年骑行时间按天汇总计算  
group_cb_day=cb1_day['bikeid']#提取每日骑行数量

#对每日最高气温和骑行量数据进行标准化处理
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(group_weather_day) X_Standard=scaler.transform(group_weather_day)
scaler = preprocessing.StandardScaler(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值