超参数(Hyperparameter)


前言

熟悉论文术语

一、什么是超参数?

机器学习模型中一般有两类参数:

  • 一类需要从数据中学习和估计得到,称为模型参数(Parameter)—即模型本身的参数。比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参数。
  • 一类则是机器学习算法中的调优参数(tuning parameters),需要人为设定,称为超参数(Hyperparameter)。比如,正则化系数λ,决策树模型中树的深度。

二、参数和超参数的区别:

  • 模型参数是模型内部的配置变量,需要用数据估计模型参数的值。
  • 模型超参数是模型外部的配置,其值无法从数据中估计,需要手动设置,并且在过程中用于帮助估计模型参数。

机器学习中一直说的“调参”,实际上不是调“参数”,而是调“超参数”。


超参数示例

迭代次数epoch,k近邻法(kNN)中的k(最相近的点的个数),决策树模型中树的深度等等都属于超参数。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值