WPS接入DeepSeek本地部署,解锁高效办公新姿势

       WPS接入DeepSeek的方式有很多种,今天小编为大家带来利用中间件工具Office AI接本地部署的DeepSeek操作教程指南。

1.安装Ollama并部署DeepSeek

      本地安装部署Ollama并部署运行DeepSeek操作请参考:DeepSeek本地部署:Ollama+ChatBox保姆级操作指南_chatbox 配置ollama后对话一直显示生成中-CSDN博客中的《2.2Ollama下载》与《2.3安装Ollama并运行模型》章节,这里将不再一一赘述。

2.安装Office AI中间件工具

网盘地址:迅雷云盘

Office AI安装流程简单,下载完成后直接执行安装即可,不再一一赘述。

3.配置WPS

打开WPS软件,点击:文件,进入如下页面

点击:选项,进入如下页面

点击:信任中心,勾选:启用所有第三方COM加载项,重启WPS后生效(E)

勾选确定之后关闭WPS,再重新打开WPS

4.配置大模型

重新打开WPS后,点击:OfficeAI,再点击:设置

点击:本地,点击:刷新模型列表,此时会弹出安装:本地服务器端,直接安装即可,安装后再点击刷新即可看到本地部署的模型

点击:保存,至此WPS接入本地部署的DeepSeek已完成

5.验证

### 关于DeepSeek模型的本地部署WPS集成指南 目前,关于DeepSeek模型的具体本地部署方法并未在提供的引用材料中提及。然而,可以基于现有的开源大模型部署经验以及相关技术栈提供一种可能的技术实现路径。 #### 1. **DeepSeek模型的本地部署** DeepSeek是一个大型语言模型系列,其官方文档提供了详细的部署指导[^4]。通常情况下,本地部署涉及以下几个方面: - **环境准备**: 需要安装Python及其依赖库(如`transformers`, `torch`等)。具体版本需求可参考DeepSeek官方文档中的说明。 - **下载权重文件**: 使用DeepSeek官方API获取预训练模型权重文件,并将其存储到指定目录下。例如: ```bash wget https://example.com/deepseek-models/model_weights.tar.gz tar -xzvf model_weights.tar.gz ``` - **加载模型**: 利用Hugging Face Transformers库加载模型实例。以下是代码示例: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepset/deberta-v3-base-squad2") model = AutoModelForCausalLM.from_pretrained("deepset/deberta-v3-base-squad2", trust_remote_code=True) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").input_ids.cuda() outputs = model.generate(inputs, max_length=50, do_sample=True) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` - **服务化运行**: 将上述逻辑封装成RESTful接口,通过Flask或FastAPI对外暴露服务端口。例如: ```python from fastapi import FastAPI app = FastAPI() @app.post("/generate/") async def generate(prompt: str): response = generate_text(prompt) return {"result": response} ``` #### 2. **WPS Office插件开发以支持DeepSeek模型调用** 为了使WPS能够访问已部署好的DeepSeek模型,可以通过以下方式完成集成工作: - 开发自定义VBA脚本或者JavaScript扩展程序来发起HTTP请求至前述搭建的服务地址; - 或者借助第三方工具包简化网络通信流程。下面给出一段伪代码作为参考: ```javascript function queryAI(text){ var xhr=new XMLHttpRequest(); xhr.open('POST','http://localhost:8000/generate/',true); xhr.setRequestHeader('Content-Type', 'application/json;charset=UTF-8'); xhr.onreadystatechange=function(){ if(xhr.readyState===4 && xhr.status===200){ alert(JSON.parse(xhr.responseText).result); } }; xhr.send(JSON.stringify({prompt:text})); } ``` 最后提醒一点,在实际操作过程中还需要考虑安全性因素比如身份验证机制设计等问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT成长日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值