自动化办公!本地部署DeepSeek接入WPS教程全搞定!

最近秋招发放Offer已高一段落。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们

技术交流

在这里插入图片描述

今天我要讲的是如何在本地部署自己的DeepSeek,以及如何将本地部署的DeepSeek接入WPS文档。

本地部署的好处显而易见,可以实现资料在本地处理,减少被第三方获取的风险,也可以减少延迟,提高响应速度。

因为我本人的电脑比较渣,所以我本地部署的最小的那个模型deepseek-r1:1.5b,接下来也只演示如何部署deepseek-r1:1.5b。

首先打开ollama网站,https://ollama.com/,点击Download(下载)。

图片

然后可以看到选择操作系统进行安装。这里我的电脑因为是Windows系统,所以我选择下载Windows系统配套版本。

图片

下载之后选择安装。

图片

安装完Ollama之后,在键盘上选择Win+R将运行窗口打开(有的同学不知道Win是哪个键,就是键盘左下角Ctrl和Alt之间有窗口图标那个键)。

图片

在运行窗口中输入cmd,点击确定,这时候会出来一个黑洞洞的窗口,也就是我们的命令行工具。

图片

在命令行工具中输入ollama -v,然后点击回车,如果出现ollama version is 0.5.7。那么说明你安装ollama成功了。

这个时候我们再回到ollama网站,下载我们的模型。

图片

点击deepseek-r1,进入后选择1.5b(如果你电脑配置足够,也可以选择更大参数的模型)。

图片

图片

然后选择复制ollama run deepseek-r1:1.5b。

图片

这个时候我们回到命令行工具,粘贴ollama run deepseek-r1:1.5b,回车。这个时候就开始在本地安装deepseek大模型了,安装时间可能需要10分钟左右。直到出现success,那么就意味着你已经成功在本地部署了deepseek。

图片

这个时候你就可以在这个黑洞洞的窗口向独属于你的人工智能发出第一声问候:你好。

图片

那么有的同学会问了,如何将这个本地部署的deepseek接入WPS文档,而不是面对这个黑洞洞的窗口呢。

首先我们随便打开一个WPS文档,点击工具——开发工具——切换到JS环境,打开WPS宏编辑器。

图片

打开模块,键入以下代码

图片

function callSiliconFlowAPI(apiKey, inputText) {
    // Ollama的API地址(默认端口11434)
    const API = "http://localhost:11434/api/generate";

    const data = {
        model: "deepseek-r1:1.5b",
        prompt: inputText,  // Ollama使用prompt字段
        stream: false       // 关闭流式传输
    };

    const options = {
        method: "POST",
        headers: {
            "Content-Type": "application/json",
        },
        body: JSON.stringify(data)
    };

    return fetch(API, options)
        .then(response => {
            if (response.ok) {
                return response.json();
            } else {
                throw new Error("Error: " + response.status + " - " + response.statusText);
            }
        })
        .then(data => {
            return data;
        })
        .catch(error => {
            return error.message;
        });
}

function siliconFlowV3() {
    const selection = Application.Selection;
    const inputText = selection.Text;

    if (!inputText) {
        alert("Please select text.");
        return;
    }

    callSiliconFlowAPI(null, inputText).then(response => {
        if (typeof response === "string" && response.startsWith("Error")) {
            alert(response);
        } else {
            // Ollama的响应结构不同,使用response.response获取内容
            const content = response.response || "No content found";
            const range = selection.Range;
            range.InsertAfter("\n" + content);
            range.Select();
        }
    });
}

然后点击保存,保存为(*.dotm)格式文件,保存地址为:找一个文件不容易丢失的地址,比如我保存在WPS软件的某个安装文件夹里。

图片

然后回到文档,在菜单栏这里新建一个选项卡,如果之前已经新建过了,那么不新建也可以。

图片

这个时候我们点击这个“加载项”。

图片

选择“添加”,添加刚才被我们保存的dotm文件。

图片

添加后勾选文件,如图,我这个里面有两个已经被添加的,上面那个是调用硅基流动API的宏文件(教程参见以前文章),下面那个就是我们刚保存的那个调用本地部署deepseek的宏文件,我们选择勾选Dpsk-本地.dotm,点击确定。

这个时候我们在文档里写下一句话,选择这句话(记住要选中文本),然后点击选项卡“DeepSeek-JS”。稍等片刻,就得到回应了。

图片

本地部署DeepSeek,并接入WPS文档,需要注意两点:

1、首先确保自己的模型已经在电脑上跑起来了,怎么跑起来呢,WIN+R,然后输入cmd,打开命令行工具,然后输入ollama run deepseek-r1:1.5b

2、确保加载项这里已经勾选上了。

图片

以上,看完的同学快去试一试吧!

### 部署 Deepseek-R1:14B 模型至 WPS 环境 #### 准备工作 为了成功部署 Ollama Deepseek-R1:14B 模型,在启动任何操作之前,需确认计算机配置能够支持该模型所需的资源。对于 14B 参数级别的模型而言,这通常意味着拥有足够的 GPU 显存和其他硬件条件[^2]。 #### 安装必要软件环境 确保已安装并配置好 Python 及其相关依赖库,这些是运行深度学习框架所必需的基础组件。此外,还需设置 Docker 或者类似的容器化平台来简化应用程序及其依赖项的一致性管理。 #### 下载与初始化模型 通过命令行界面执行特定指令以获取指定版本的预训练权重文件: ```bash ollama run deepseek-r1:14b ``` 此过程会自动完成模型及相关资源文件的拉取,并准备就绪以便后续调用。 #### 整合到 WPS 办公套件 目前并没有直接的方法可以在 WPS 中原生集成如此大规模的语言模型。然而,可以通过 API 接口的方式实现间接交互——即开发一个基于 Web 的插件或小型服务器程序作为中介层,它负责接收来自 WPS 插件发送过来的数据请求,转发给本地部署好的 Deepseek-R1 实例处理后再返回结果给用户。 具体来说就是利用 WPS 提供的开发者工具创建自定义功能模块(如按钮),当点击时触发网络请求向外部服务传递文档内容片段或其他输入信息;而另一边则是在本机搭建 RESTful API 服务监听此类请求并将它们提交给已经准备好等待查询的任务队列中去。 需要注意的是这种方案涉及到跨域通信等问题可能需要额外解决措施才能顺利运作起来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值