大佬的思路:
这其实是一道“披着狼皮的背包题”
我们只需要对状态稍作调整就可以套背包啦~~~
我们先把骨牌翻转,调整至点数大的在上面
这样,我们就能保证上方的点数一定比下方大,并且保证每翻转一 次,都能使上下的点数之差变小,而变小的点数,就是上下点数之差乘以2。
把改变的点数看成物品的体积,初始上下方的点数之差看做背包体积,不难看出背包问题的模型。
那么物品的重量是什么呢?
因为我们一开始就把点数大的放在了上面,而每放一次,翻转次数就+1。考虑:要是我后来后悔了,我发现不翻这个骨牌更好怎么办?那我会把它翻回来,那么相当于没有翻这个骨牌。
因此,一开始翻过的骨牌重量就是-1,未翻过的骨牌重量就是1(重量等价于翻转次数)
当然,上下相同的骨牌就是体积为0,重量为0的物品,因为他们无论怎么翻,都不会对上下点数差造成影响。
至此,背包的模型就出来了。这个问题被简化成:有n个物品,给出每个物品的体积v[i],他们的重量是1或-1。背包的重量为base,体积为tot,现在请把这n个物品放到背包里去,总体积不能超过tot,体积最大的情况下使得物品重量之和最小。
其中,dp[i][j]表示前i件物品能装到体积为j的最小重量
vs[i][j]表示前i件物品能否装到j体积
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n;
int sum;
int v[1007],w[1007];
int dp[1007][6007],vis[1007][6007];//不能用一维的数组进行求解,因为w数组中有正有负,可能出现结果为0而不好处理。
int base;
int main()
{
scanf("%d",&n);
int x,y;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
if(x>y)
{
v[i]=2*(x-y);
w[i]=1;
sum+=x-y;
}
else if(x<y)
{
v[i]=2*(y-x);
w[i]=-1;
sum+=y-x;
base++;//基础的翻牌次数,每次将最大的翻到上面用一次
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=sum;j++)
{
dp[i][j]=dp[i-1][j];
vis[i][j]=vis[i-1][j];
if(vis[i-1][j-v[i]]||j-v[i]==0)
{
if(!vis[i][j])
{
dp[i][j]=dp[i-1][j-v[i]]+w[i];
vis[i][j]=1;
}
else dp[i][j]=min(dp[i][j],dp[i-1][j-v[i]]+w[i]);
}
}
for(int i=sum;i>=1;i--)
if(vis[n][i])
{
printf("%d\n",base+dp[n][i]);
return 0;
}
return 0;
}
做法二:用dp[i][j]来表示当前考虑到第i个骨牌,第一行的总和为j的最小交换次数。记第一行骨牌的点数放入数组a,第二行骨牌的点数放入数组b,初始时令dp[1][a[1]]=0,dp[1][b[1]]=1。
状态转移方程为:dp[i][j]=min(dp[i][j],dp[i-1][j-a[i]])
dp[i][j]=min(dp[i][j],dp[i-1][j-b[i]]+1)
由于我们可以计算所有牌的总和,最终,再从所有的能通过交换使得第一行的所有总和中,找到使差值最小的。
#include<bits/stdc++.h>
using namespace std;
const int inf=1e9;
int n;
int a[1007],b[1007];
int dp[1007][6007];
int sum;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&b[i]);
sum+=a[i]+b[i];
}
for (int i = 1; i <= n; i ++)
for (int j = 0; j <= 6*n; j ++) dp[i][j] = inf;
dp[1][b[1]]=1,dp[1][a[1]]=0;//这个顺序不能交换,因为当第一个牌相等时,一二行不用换
for(int i=2;i<=n;i++)
for(int j=0;j<=6*i;j++)
{
if(j-a[i]>=0) dp[i][j]=min(dp[i][j],dp[i-1][j-a[i]]);
if(j-b[i]>=0) dp[i][j]=min(dp[i][j],dp[i-1][j-b[i]]+1);
}
int mi=inf,ans=inf;
for(int i=0;i<=sum;i++)
{
if(dp[n][i]!=inf){
if(abs(sum-2*i)<mi)
{
ans=dp[n][i];
mi=abs(sum-2*i);
}
else if(abs(sum-2*i)==mi)
{
ans=min(ans,dp[n][i]);
}
}
}
printf("%d\n",ans);
return 0;
}