给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数n,表示树的结点数。
接下来n-1行,每行包含两个整数a和b,表示点a和点b之前存在一条边。
输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。
数据范围
1≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pll;
const int N=1e5+10;
vector<int >tu[N];
bool v[N];
int size[N];
int n;
int ans=1e9;
int pos;
void dfs(int x){
v[x]=1;
size[x]=1; //终点
int max_part=0;//x 点最大的子树
for(int i=0;i<tu[x].size();i++){
if(!v[tu[x][i]]){
dfs(tu[x][i]);
size[x]+=size[tu[x][i]];
max_part=max(max_part,size[tu[x][i]]);
}
}
max_part=max(max_part,n-size[x]);
//max_part:x点周围最大的子树;
if(max_part<ans){
ans=max_part;
pos=x;
}
}
int main(){
cin>>n;
for(int i=0;i<n-1;i++){
int u,v;
cin>>u>>v;
tu[u].push_back(v);
tu[v].push_back(u);
}
dfs(1);
cout<<ans<<endl;
return 0;
}