树的邻接表
存储方式
int N;
int h[N];//存以N为编号的节点的下一个节点的idx
int e[2N];//存idx的节点的编号
int nex[2N];//存idx节点的下一个节点的idx
void add(int a, int b){
e[idx] = b;
nex[idx] = h[a];
h[a]=idx++;
}
dfs遍历方式:
void dfs(int u){
state[u] = 1;
for(int j = h[u]; j!=-1; j = nex[j]){
int a = e[j] //取节点编号
if(!state[a]){
dfs(a);}
}
}
树的重心
题目描述
给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数n,表示树的结点数。
接下来n-1行,每行包含两个整数a和b,表示点a和点b之前存在一条边。
输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。
问题分析
先对每个节点遍历,对于节点u, 求出以节点u为重心的个连通块的点数的最大值res。
再求res的最小值即可。
在dfs遍历中,假如遍历到节点4,与4联通的1节点已经被遍历过:
dfs(4) : 求以4为根节点的子树的节点数 (不包括已经被遍历的点)
遍历过程中: 与4联通的节点:1(×) s1 = dfs(2) res = max(s1, res) sum += s;
代码实现
#include <iostream>
#include <cstring>
using namespace std;
const int N=100010;
bool state[N];
//因为是双向边
int h[N],e[2*N],ne[2*N],idx,ans=N;
int n;
int add(int a,int b){
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
//返回以u为节点的子树的节点个数
int dfs(int u){
int sum = 1; // 包含u
int res =0 ;//返回以u为重心的联通块的最大点数
state[u] = 1;
for(int i = h[u]; i!=-1; i = ne[i]){
int j = e[i];
if(!state[j]){
state[j] = 1;
int s = dfs(j);
res = max(res, s);
sum += s;
}
}
res = max(res, n-sum);
ans = min(res, ans);
return sum;
}
int main(){
cin>>n;
memset(h,-1,sizeof h);
int a,b;
for(int i=0;i<n;i++){
cin>>a>>b;
add(a,b);
add(b,a);
}
dfs(1);
cout<<ans<<endl;
return 0;
}