【DFS】树的重心

39 篇文章 0 订阅
25 篇文章 0 订阅

树的邻接表

存储方式
在这里插入图片描述

int N;
int h[N];//存以N为编号的节点的下一个节点的idx
int e[2N];//存idx的节点的编号
int nex[2N];//存idx节点的下一个节点的idx

void add(int a, int b){
e[idx] = b;
nex[idx] = h[a];
h[a]=idx++;
}

dfs遍历方式:

void dfs(int u){
    state[u] = 1;
    for(int j = h[u]; j!=-1; j = nex[j]){
    int a = e[j] //取节点编号
    if(!state[a]){
    dfs(a);}   
}    
}

树的重心

题目描述
给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。

请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式
第一行包含整数n,表示树的结点数。

接下来n-1行,每行包含两个整数a和b,表示点a和点b之前存在一条边。

输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。

问题分析

先对每个节点遍历,对于节点u, 求出以节点u为重心的个连通块的点数的最大值res。
再求res的最小值即可。

在dfs遍历中,假如遍历到节点4,与4联通的1节点已经被遍历过:
dfs(4) : 求以4为根节点的子树的节点数 (不包括已经被遍历的点)
遍历过程中: 与4联通的节点:1(×) s1 = dfs(2) res = max(s1, res) sum += s;

在这里插入图片描述

代码实现

#include <iostream>
#include <cstring>
using namespace std;

const int N=100010;
bool state[N];

//因为是双向边
int h[N],e[2*N],ne[2*N],idx,ans=N;

int n;

int add(int a,int b){
   e[idx]=b;
   ne[idx]=h[a];
   h[a]=idx++;
}
//返回以u为节点的子树的节点个数
int dfs(int u){
    int sum = 1; // 包含u
    int res =0 ;//返回以u为重心的联通块的最大点数
    state[u] = 1;
    for(int i = h[u]; i!=-1; i = ne[i]){
        int j = e[i];
        if(!state[j]){
            state[j] = 1;
            int s = dfs(j);
            res = max(res, s);
            sum += s;
        }
    }
    
    res = max(res, n-sum);
    
    ans = min(res, ans);
    
    return sum;
    
    
}

int main(){
    cin>>n;
    memset(h,-1,sizeof h);
    int a,b;
    for(int i=0;i<n;i++){
        cin>>a>>b;
        add(a,b);
        add(b,a);
        
    }
    
    dfs(1);
    cout<<ans<<endl;
        
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值