离散动力系统之特征值和特征向量的应用

本文探讨了利用阶段矩阵模型预测斑点猫头鹰种群灭绝的可能性,分析了森林破坏对幼年猫头鹰存活率的影响。模型显示,如果幼年猫头鹰找到新栖息地的比例低于50%,种群将走向灭绝。然而,如果这一比例提高,猫头鹰数量将逐渐增长。通过对线性动力系统的深入研究,揭示了特征值和特征向量在预测生态系统动态中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

【背景引入】

【思考一下1】

【问题描述】

【问题分析】

【问题解答】

【思考一下2】

【问题结论】        


【背景引入】

        1990年,在利用或滥用太平洋西北部大面积森林问题上,北方的斑点猫头鹰成为一个争论的焦点。环境保护学家试图说服联邦政府,如果采伐原始森林(长有200年以上的树木)的行为得不到制止,猫头鹰将濒临灭绝,因为猫头鹰喜好在那里居住。

        而木材行业却争辩说猫头鹰不应被划为“濒临灭绝动物”,并引用一些已发表的科学报告来支持其论点,对木材行业来说,如果政府出合新的伐木限制,预计将失去30000 至100000 个工作岗位。

        数学生态学家处于争论双方的中间,由于争论的双方都想游说数学生态学家,数学生态学家加快了他们对斑点猫头鹰种群的动力学研究。

        猫头鹰的生命周期自然分为三个阶段:幼年期(1岁以前)、半成年期(1~2岁)、成年期(2岁以后) 。猫头鹰在半成年和成年期交配,开始生育繁殖,可活到20岁左右。 每一对猫头鹰需要约 1000公顷(4平方英里)的土地作为自己的栖息地。生命周期的关键期是当幼年猫头鹰离开巢的时候。 为生存和进入半成年期,一只幼年猫头鹰必须成功地找到一个新的栖息地安家(通常还带有一个配偶)

        研究种群动力学的第 1步是建立以每年的种群量为区间的种群模型,时间为大=0.1.2..…通常可以假设在每一个生命阶段雄性和雌性的比例为 1:1,而且只计算雌性猫头鹰,第 k 年的种群量可以用向量x_{k} = (j_{k},s_{k},a_{k})表示,其中j_{k},s_{k}a_{k} 分别代表雌性猫头鹰在幼年期、半成年期和成年期的数量。利用人口统计研究的实际现场数据, R.Lamberson 及其同事设计了下面的“阶段矩阵模型”

                        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \begin{bmatrix} j_{k+1} \\ s_{k+1} \\ a_{k+1} \end{bmatrix} = \begin{bmatrix} 0&0&0.33 \\0.18&0&0\\ 0&0.71&0.94\end{bmatrix} \begin{bmatrix} j_{k} \\ s_{k} \\ a_{k} \end{bmatrix}        (等式1)

        在这里新的幼年雌性猫头鹰在k+1年中的数量是成年雌性猫头鹰在k年里数量的0.33倍(根据每一对猫头鹰的平均生殖率市定)。此外,18%的幼年雌性猫头鹰得以生存进入半成年期,71%的半成年雌性猫头鹰和 94%的成年雌性猫头鹰生存下来被计为成年猫头鹰。

        阶段矩阵模型是形式为x_{k+1} = Ax_{k}的差分方程,这种方程被称为动力系统(或离散线性动力系统),因为它描述的是系统随时间推移的变化

        Lamberson 阶段矩阵中,18%的幼年猫头鹰生存率是受原始森林中猫头鹰数目影响最大的项目。事实上,60%的幼年猫头鹰通常生存下来后就会离开自己的巢,但是在 Lamberson 和他的同事们作研究的加州Willow Creek 地区,只有30%的幼年猫鹰在弃巢后能找到新的栖息地,其他的在寻找新家园过程中失踪了。

        猫头鹰不能找到新栖息地的一个重要原因是对原始森林分散区域的砍伐加剧了原始森林的分割。当猫头鹰离开森林保护区并穿过一块滥伐地时,被捕食动物袭击的危险大增。接下来将会展示前面讨论的模型如何预测斑点猫头鹰的最终灭绝,但如果 50%的幼年猫头鹰弃巢后能找到新的栖息地,猫头鹰种群将会兴旺起来。本文的目的是剖析线性变换x\rightarrow Ax的作用,把它分解为容易理解的元素。本文中出现的矩阵都是方阵。虽然这里讨论的主要应用是离散动力系统(包括上面的斑点猫头鹰),但有关特征值和特征向量的基本概念对纯数学和应用数学都很有用,它们出现的背景要比我们这里考虑的要广泛得多。同样,特征值还被用来研究微分方程和连续动力系统,为工程设计提供关键知识,自然地,也出现在物理和化学等领域里。


【思考一下1】

Q1:背景中讨论的模型,如何预测斑点猫头鹰的最终灭绝?

        A1:在接下来的内容中,我们将讨论这个问题。

Q2: 特征值和特征方程仅被用来研究离散动力系统吗?

        A2:当然不是。

                还可被用来研究微分方程,连续动力系统,涉及工程设计,物理和化学等领域。


【问题描述】

捕食者-食饵系统

        【例1】在加利福尼亚州的红木森林深处,作为老鼠的主要捕食者,斑点猫头鹰的食物有 80%是老
鼠。利用线性动力系统来建立猫头鹰和老鼠的自然系统模型。(其实,这个模型在某些方面与现实不符,但它能够为环境科学家们所用的更复杂的非线性模型的研究提供一个起点。)
        用x_{k} = \begin{bmatrix} O_{k} \\ R_{k}\end{bmatrix}表示在时间 kk的单位是月),猫头鹰和老鼠的数量,O_{k}是在研究区域猫头鹰的数量,R_{k}是老鼠的数量(单位是千只)。设

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        O_{k+1} = (0.5)O_{k} + (0.4)R_{k}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        R_{k+1} = -p \cdot O_{k} + (1.1)R_{k}        (方程组1)

【问题分析】

        其中p是被指定的正参数。

        第1个方程中的(0.5)O_{k}表示,如果没有老鼠为食物,每月仅有一半的猫头鹰存活下来,而第2个方程的(1.1)R_{k}表明如果没有猫头鹰捕食老鼠,那么老鼠的数量每月增长10%。

        假如有足够多的老鼠(0.4)R_{k}表示猫头鹰增长的数量,而负项(-p \cdot O_{k})表示由于猫头鹰的捕食所引起的老鼠的死亡数量。(事实上,一只猫头鹰每月平均吃掉1000p只老鼠.)当p=0.104时,预测该系统的发展趋势。

【问题解答】

        当p=0.104时,算出(方程组1)的系数矩阵A的特征值是\lambda _{1} = 1.02\lambda_{2} = 0.58

对应的特征向量是:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        v_{1} = \begin{bmatrix} 10\\13\end{}v_{2} = \begin{bmatrix}5\\1 \end{}

        初试向量x_{0}可以表示为 x_{0} = c_{1}v_{1}+c_{2}v_{2},那么对 k \geqslant 0

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        x_{k} = c_{1}(1.02)^{k}v_{1}+c_{2}(0.58)^{k} v_{2}

     ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值