求解车流量之线性方程组

目录

【问题描述】

【问题要求】

【背景补充】

【问题解答】

【衍生问题】

【python代码展示】

【模型总结】


【问题描述】

图1 中的网络是,某市区一些单行道在一个下午,早些时候(以每小时车辆数目计算)的交通流量.

                                

                                                                        图1

【问题要求】

计算该网络的车流量

【背景补充】

什么是网络?

        答:一个网络包含一组称为结合点节点的点集,并由称为分支的线或弧连接部分或全部节点,留的方向在每个分支上有标示,流量(或速度)也有显示或用变量标记。

网络流的基本假

### 车辆路径问题 (VRP) 的代码实现及详细解释 #### 定义与背景 车辆路径问题是物流配送领域中的经典优化问题之一。该问题旨在给定一组客户及其需求的情况下,规划最优的运输路线使得总成本最小化[^1]。 #### 数学模型描述 通常情况下,VRP 可以被建模成整数线性规划问题。设 \( n \) 表示客户的数量加上仓库节点,则有: - 设决策变量 \( x_{ij} = 1 \),如果从节点 i 到 j 存在一个服务;否则为0; - 对于每一个客户服务一次约束:\(\sum_j{x_{ij}}=1, \forall{i}\in{C},\) 其中 C 是所有客户需求集合; - 流量守恒条件:对于任意非起点终点节点 k,\( \sum_i {x_{ik}}=\sum_j {x_{kj}},\) 这些方程定义了一个基本框架来解决这个问题[^2]. #### Python 实现案例 下面提供一段基于贪心算法求解简单版本 VRP 的Python程序: ```python import numpy as np def calculate_distance_matrix(locations): num_locations = len(locations) dist_matrix = np.zeros((num_locations, num_locations)) for from_counter, from_node in enumerate(locations): for to_counter, to_node in enumerate(locations): if from_counter != to_counter: # 计算欧氏距离 dist_matrix[from_counter][to_counter] = ( ((from_node[0]-to_node[0])**2 + (from_node[1]-to_node[1])**2)**0.5) return dist_matrix class VehicleRoutingProblemSolver(object): def __init__(self, depot_location, customer_locations, vehicle_capacity, demand_per_customer): self.depot_loc = depot_location self.customer_locs = customer_locations self.vehicle_capa = vehicle_capacity self.demand_list = demand_per_customer self.distances = None def solve(self): remaining_customers = set(range(len(self.customer_locs))) routes = [] current_load = 0 route = [] while remaining_customers or not route: nearest_neighbor_index = -1 min_dist_to_next_cust = float('inf') for cust_idx in remaining_customers.union({len(self.customer_locs)}): distance_from_last_stop = \ self._get_distance_between_stops(route[-1], cust_idx)\ if route else\ self._get_distance_depot_to_customer(cust_idx) if distance_from_last_stop < min_dist_to_next_cust and \ (current_load + self.demand_list[cust_idx]) <= self.vehicle_capa: min_dist_to_next_cust = distance_from_last_stop nearest_neighbor_index = cust_idx if nearest_neighbor_index >= 0: route.append(nearest_neighbor_index) current_load += self.demand_list[nearest_neighbor_index] remaining_customers.remove(nearest_neighbor_index) elif route: # 当前车已满载返回仓库 routes.append([self.depot_loc]+route+[self.depot_loc]) route.clear() current_load = 0 return routes def _get_distance_between_stops(self, stop_a_id, stop_b_id): return self.distances[stop_a_id][stop_b_id] def _get_distance_depot_to_customer(self, cust_id): return self.distances[len(self.customer_locs)][cust_id] if __name__ == '__main__': locations = [[0, 0]] + [(np.random.rand()*100,np.random.rand()*100) for _ in range(9)] # 随机生成位置数据 demands = [int(np.random.randint(low=1, high=8)) for _ in range(9)] solver = VehicleRoutingProblemSolver( depot_location=(locations.pop(0)), customer_locations=locations, vehicle_capacity=sum(demands)//3+1, demand_per_customer=demands ) distances = calculate_distance_matrix([(0, 0)] + locations) solver.distances = distances result_routes = solver.solve() print("Optimized Routes:") for idx, r in enumerate(result_routes): print(f"Route #{idx}: {[f'Customer-{i}'for i in r]}") ``` 此段代码实现了简单的最近邻启发式方法用于构建初始可行方案,并考虑了容量限制。实际应用中可能还需要加入更多复杂的因素如时间窗、多车型等特性[^3].
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值