目录
【问题描述】
求一条光线从光速为 c1 的介质中的点 A 穿过平直界面,行进到光速为 c2 的介质中点 B 的路径。
【问题分析】
因为光线从 A 到 B 会按最快的路径行进,所以我们寻求使行进时间最短的路径。
【建立模型】
图1
我们假定 A 和 B 位于 xy 平面,而且两种介质的分界线为 x 轴(图1) 在均匀的介质中光速不变,“ 最短时间 ” 意即 “ 最短路径 〞,而且光线遵循直线路径行进。由此,从A到B的路径由从A到边界点P 的线段,紧接着从 P 到 B 的另一个线段组成,由距离等于速率乘时间的公式。
【问题解答】
时间 = 距离 / 速率 (公式1)
所以,光线从 A 行进到 P 所需要的时间为:
(方程1)