Snell定律(折射定律)之导数的应用

目录

【问题描述】

【问题分析】

【建立模型】

【问题解答】

【c++代码展示】

【产生结论】

【知识补充】


【问题描述】

        求一条光线从光速为 c1 的介质中的点 A 穿过平直界面,行进到光速为 c2 的介质中点 B 的路径。

【问题分析】

        因为光线从 A 到 B 会按最快的路径行进,所以我们寻求使行进时间最短的路径

【建立模型】

                                

                                                                        图1

        我们假定 A 和 B 位于 xy 平面,而且两种介质的分界线为 x 轴(图1) 在均匀的介质中光速不变,“ 最短时间 ” 意即 “ 最短路径 〞,而且光线遵循直线路径行进。由此,从A到B的路径由从A到边界点P 的线段,紧接着从 P 到 B 的另一个线段组成,由距离等于速率乘时间的公式。

【问题解答】

        时间 = 距离  / 速率        (公式1)

        所以,光线从 A 行进到 P 所需要的时间为:

                                                        (方程1)

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值