【聚类算法】带你轻松搞懂K-means聚类(含代码以及详细解释)

一:K-means聚类算法

聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习
k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。

二:实例分析

现有50个二维数据点如下图,使用K-Means算法将以下数据实现聚类。
在这里插入图片描述
结果展示:
在这里插入图片描述

三:原理与步骤

K-means算法是典型的基于距离(欧式距离、曼哈顿距离)的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
K-mean算法步骤如下:

  1. 先定义总共有多少个簇类,随机选取K个样本为簇中⼼。
  2. 分别计算所有样本到随机选取的K个簇中⼼的距离。
  3. 样本离哪个中⼼近就被分到哪个簇中⼼。
  4. 计算各个中⼼样本的均值(最简单的⽅法就是求样本每个点的平均值)作为新的簇心。
  5. 重复2、3、4直到新的中⼼和原来的中⼼基本不变化的时候,算法结束。

算法结束条件:

  1. 当每个簇的质心,不再改变时就可以停止k-menas。
  2. 当循环次数达到事先规定的次数时,停止k-means

原理示意图:
在这里插入图片描述
简单小实例:
有以下6个点,初始随机选取两个点作为两个簇的簇中心(这里假设选取的是A3,A4),求最后的簇所属情况。
在这里插入图片描述
1️⃣:计算每个点到簇心的距离,将距离近的归为一类。
在这里插入图片描述
2️⃣:将红色对应的点和绿色对应的每个点分别求X,Y平均值,最为新的簇心。
在这里插入图片描述
3️⃣:计算每个点到新簇心的距离,继续将对应距离近的点归为一类。
在这里插入图片描述
4️⃣:由于关联点没有发生变化,所以之后的结果不会发生变化。停止计算
5️⃣:得结果红色簇:A1,A3,A5,紫色簇:A2,A4,A6。

四:Matlab代码以及详解

clc;clear;close all;
data(:,1)=[90,35,52,83,64,24,49,92,99,45,19,38,1,71,56,97,63,...
    32,3,34,33,55,75,84,53,15,88,66,41,51,39,78,67,65,25,40,77,...
    13,69,29,14,54,87,47,44,58,8,68,81,31];
data(:,2)=[33,71,62,34,49,48,46,69,56,59,28,14,55,41,39,...
    78,23,99,68,30,87,85,43,88,2,47,50,77,22,76,94,11,80,...
    51,6,7,72,36,90,96,44,61,70,60,75,74,63,40,81,4];
%50 * 1
figure(1)

scatter(data(:,1),data(:,2),'MarkerEdgeColor','r','LineWidth',2)
%% 原理推导K均值
[m,n]=size(data);%m = 50,n = 1;
cluster_num=4;%4个初始中心
cluster=data(randperm(m,cluster_num),:);%randperm(m,cluster_num)在前m中随机选取cluster_num个  %随机选取中心
%data函数  取数据用
epoch_max=1000;%最大次数
therad_lim=0.001;%中心变化阈值
epoch_num=0;
while(epoch_num<epoch_max)
    epoch_num=epoch_num+1;
    for i=1:cluster_num
    distance=(data-repmat(cluster(i,:),m,1)).^2;% 50 * 2  repmat扩展矩阵
    %.^2是矩阵中的每个元素都求平方,^2是求矩阵的平方或两个相同的矩阵相乘,因此要求矩阵为方阵
    distance1(:,i)=sqrt(sum((distance),2));%求行和
    %distance1(:,i)=sqrt(sum(distance'));% 默认求列和  1表示每一列进行求和,2表示每一行进行求和;
    %sqrt(sum(distance')) == 1 * 50
    %distance1 50 * 4 表示每个点距离第i个点的距离
    end
    [~,index_cluster]=min(distance1');%distance1' = 4 * 50,min 求列最值  index_cluster = 最小值所在行号  index_cluster = 1 * 50
    for j=1:cluster_num
    cluster_new(j,:)=mean(data(find(index_cluster==j),:));% 4 * 2  找到距离对应中心最近的点 横纵坐标各取平均值
    end
    if (sqrt(sum((cluster_new-cluster).^2))>therad_lim)
        cluster=cluster_new;
    else
        break;
    end
end
%% 画出聚类效果
figure(2)
%subplot(2,1,1)
a=unique(index_cluster); %找出分类出的个数
C=cell(1,length(a));%1 * 4的元胞
for i=1:length(a)
   C(1,i)={find(index_cluster==a(i))};
end
for j=1:cluster_num
    data_get=data(C{1,j},:);%从data中取每个类的点
    scatter(data_get(:,1),data_get(:,2),80,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);
    hold on
end
plot(cluster(:,1),cluster(:,2),'kp','LineWidth',2);%画出4个聚类中心
hold on
sc_t=mean(silhouette(data,index_cluster'));
title_str=['原理推导K均值聚类','  聚类数为:',num2str(cluster_num),'  SC轮廓系数:',num2str(sc_t)];
title(title_str)
  • 21
    点赞
  • 182
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我知道了。关于你的问题,K-Means算法和Mini Batch K-Means算法都是聚类算法,它们都可以用于对数据集进行聚类。但是它们之间也存在一些区别。 K-Means算法的步骤如下: 1. 从数据集中随机选择k个点作为簇的中心点; 2. 对于每个数据点,计算它与每个簇中心点的距离,将它归为距离最近的簇; 3. 根据归类结果重新计算每个簇的中心点; 4. 重复2和3步,直到簇的中心点不再改变或达到最大迭代次数。 而Mini Batch K-Means算法K-Means算法的一种优化,它的主要改进在于每次只从数据集中随机选择一部分数据作为样本,而不是全部数据,来计算簇的中心点,从而减少计算量。具体步骤如下: 1. 从数据集中随机选择k个点作为簇的中心点; 2. 从数据集中随机选择一个小的批次(batch)数据; 3. 对于每个数据点,计算它与每个簇中心点的距离,将它归为距离最近的簇; 4. 根据归类结果重新计算每个簇的中心点,并将此批次数据用于更新中心点; 5. 重复2~4步,直到簇的中心点不再改变或达到最大迭代次数。 相比于K-Means算法,Mini Batch K-Means算法具有以下优点: 1. 计算速度更快,因为每次只需要计算一部分数据; 2. 可以处理大规模数据集,因为不需要将全部数据集加载到内存中; 3. 可以保持较好的聚类效果。 但是,Mini Batch K-Means算法也存在一些缺点,例如聚类效果可能不如K-Means算法稳定,因为每次只随机选择一部分数据进行计算,可能会导致某些数据点没有被考虑到。同时,Mini Batch K-Means算法需要调整一些超参数,例如批次大小和最大迭代次数等,以达到最佳效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值