Co-scale conv-attentional image transformer代码

首先这次主要看CoaT-Lite small的代码。因为他还有CoaT代码,等下一步再看。

代码地址:代码每一步debug后的维度都批注在代码后面。

mlpc-ucsd/CoaT: (ICCV 2021 Oral) CoaT: Co-Scale Conv-Attentional Image Transformers (github.com)

""" 
CoaT architecture.

Modified from timm/models/vision_transformer.py
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model

from einops import rearrange
from functools import partial
from torch import nn, einsum

__all__ = [
    "coat_tiny",
    "coat_mini",
    "coat_small",
    "coat_lite_tiny",
    "coat_lite_mini",
    "coat_lite_small"
]


def _cfg_coat(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


class Mlp(nn.Module):
    """ Feed-forward network (FFN, a.k.a. MLP) class. """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class ConvRelPosEnc(nn.Module):
    """ Convolutional relative position encoding. """
    def __init__(self, Ch, h, window): #(8,8,window=crpe_window={3:2, 5:3, 7:3})

        """
        Initialization.
            Ch: Channels per head.
            h: Number of heads.
            window: Window size(s) in convolutional relative positional encoding. It can have two forms:
                    1. An integer of window size, which assigns all attention heads with the same window size in ConvRelPosEnc.
                    2. A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})
                       It will apply different window size to the attention head splits.
        """
        #embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs
        super().__init__()

        if isinstance(window, int):
            window = {window: h}                                                         # Set the same window size for all attention heads.
            self.window = window
        elif isinstance(window, dict):
            self.window = window #{3:2, 5:3, 7:3}
        else:
            raise ValueError()            
        
        self.conv_list = nn.ModuleList()
        self.head_splits = []

        for cur_window, cur_head_split in window.items():#(3,2)/(5,3)/(7,3)
            dilation = 1                                                                 # Use dilation=1 at default.
            padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 #(3+(2)*(0))//2 =1     # Determine padding size. Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338
            cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch, #(16,16,k=3,p=1,1,16)/(18,18,k=5,p=2,1,16)
                kernel_size=(cur_window, cur_window),
                padding=(padding_size, padding_size),
                dilation=(dilation, dilation),                          
                groups=cur_head_split*Ch,
            )
            self.conv_list.append(cur_conv)
            self.head_splits.append(cur_head_split)#(2,3,3)
        self.channel_splits = [x*Ch for x in self.head_splits] #ch = 8 , head_splits=[2,3,3]

    def forward(self, q, v, size): #size(q=v)=(1,8,19201,8)
        B, h, N, Ch = q.shape # B:1 h:8 N:19201 Ch:8
        H, W = size #(120,160)
        assert N == 1 + H * W

        # Convolutional relative position encoding.
        q_img = q[:,:,1:,:]#(1,8,19200,8)                                                            # Shape: [B, h, H*W, Ch].
        v_img = v[:,:,1:,:]#(1,8,19200,8)                                                              # Shape: [B, h, H*W, Ch].
        
        v_img = rearrange(v_img, 'B h (H W) Ch -> B (h Ch) H W', H=H, W=W)#(1,64,120,160)            # Shape: [B, h, H*W, Ch] -> [B, h*Ch, H, W].
        v_img_list = torch.split(v_img, self.channel_splits, dim=1)  #channel_splits=[16,24,24]                    # Split according to channels.
        conv_v_img_list = [conv(x) for conv, x in zip(self.conv_list, v_img_list)]#[(1,16,120,160),(1,24,120,160),(1,24,120,160)]
        conv_v_img = torch.cat(conv_v_img_list, dim=1)#(1,64,120,160)
        conv_v_img = rearrange(conv_v_img, 'B (h Ch) H W -> B h (H W) Ch', h=h)#(1,8,19200,8)       # Shape: [B, h*Ch, H, W] -> [B, h, H*W, Ch].

        EV_hat_img = q_img * conv_v_img#(1,8,19200,8)
        zero = torch.zeros((B, h, 1, Ch), dtype=q.dtype, layout=q.layout, device=q.device)#(1,8,1,8)
        EV_hat = torch.cat((zero, EV_hat_img), dim=2)  #(1,8,19201,8)           # Shape: [B, h, N, Ch].

        return EV_hat


class FactorAtt_ConvRelPosEnc(nn.Module):
    """ Factorized attention with convolutional relative position encoding class. """
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., shared_crpe=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)                                           # Note: attn_drop is actually not used.
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        # Shared convolutional relative position encoding.
        self.crpe = shared_crpe

    def forward(self, x, size):
        B, N, C = x.shape #(1,19201,64)

        # Generate Q, K, V.
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) #(3,1,8,19201,8) # Shape: [3, B, h, N, Ch].
        q, k, v = qkv[0], qkv[1], qkv[2]     #(1,8,19201,8)                                            # Shape: [B, h, N, Ch].

        # Factorized attention.
        k_softmax = k.softmax(dim=2)                                                     # Softmax on dim N.
        k_softmax_T_dot_v = einsum('b h n k, b h n v -> b h k v', k_softmax, v)  #(1,8,8,8)        # Shape: [B, h, Ch, Ch].
        factor_att        = einsum('b h n k, b h k v -> b h n v', q, k_softmax_T_dot_v) #(1,8,19201,8) # Shape: [B, h, N, Ch].

        # Convolutional relative position encoding.
        crpe = self.crpe(q, v, size=size)      #(1,8,19201,8)                                           # Shape: [B, h, N, Ch].

        # Merge and reshape.
        x = self.scale * factor_att + crpe #(1,8,19201,8)
        x = x.transpose(1, 2).reshape(B, N, C)#(1,19201,64)                                          # Shape: [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C].

        # Output projection.
        x = self.proj(x)#(1,19201,64)
        x = self.proj_drop(x)

        return x                                                                         # Shape: [B, N, C].


class ConvPosEnc(nn.Module):
    """ Convolutional Position Encoding. 
        Note: This module is similar to the conditional position encoding in CPVT.
    """
    def __init__(self, dim, k=3):
        super(ConvPosEnc, self).__init__()
        self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) 
    
    def forward(self, x, size):
        B, N, C = x.shape #(1,19201,64)
        H, W = size #(120,160)
        assert N == 1 + H * W

        # Extract CLS token and image tokens.
        cls_token, img_tokens = x[:, :1], x[:, 1:] #(1,1,64),(1,19200,64)   # Shape: [B, 1, C], [B, H*W, C].
        
        # Depthwise convolution.
        feat = img_tokens.transpose(1, 2).view(B, C, H, W)#(1,64,120,160)
        x = self.proj(feat) + feat#(1,64,120,160)
        x = x.flatten(2).transpose(1, 2)

        # Combine with CLS token.
        x = torch.cat((cls_token, x), dim=1)#(1,19200,64)

        return x


class SerialBlock(nn.Module):
    """ Serial block class.
        Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 shared_cpe=None, shared_crpe=None):
        # shared_cpe=self.cpe1, shared_crpe=self.crpe1
        super().__init__()

        # Conv-Attention.
        self.cpe = shared_cpe

        self.norm1 = norm_layer(dim)
        self.factoratt_crpe = FactorAtt_ConvRelPosEnc(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpe)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # MLP.
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, size):
        # Conv-Attention.
        x = self.cpe(x, size)    #[(1,19201,64),(120,160)]/[(1,4801,128),(60,80)]               # Apply convolutional position encoding.
        cur = self.norm1(x)
        cur = self.factoratt_crpe(cur, size) #(1,19201,64)/(1,4801,128)   # Apply factorized attention and convolutional relative position encoding.
        x = x + self.drop_path(cur) #(1,19201,64)/(1,4801,128)

        # MLP. 
        cur = self.norm2(x)
        cur = self.mlp(cur)
        x = x + self.drop_path(cur)

        return x


class ParallelBlock(nn.Module):
    """ Parallel block class. """
    def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 shared_cpes=None, shared_crpes=None):
        super().__init__()

        # Conv-Attention.
        self.cpes = shared_cpes

        self.norm12 = norm_layer(dims[1])
        self.norm13 = norm_layer(dims[2])
        self.norm14 = norm_layer(dims[3])
        self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc(
            dims[1], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpes[1]
        )
        self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc(
            dims[2], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpes[2]
        )
        self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc(
            dims[3], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpes[3]
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # MLP.
        self.norm22 = norm_layer(dims[1])
        self.norm23 = norm_layer(dims[2])
        self.norm24 = norm_layer(dims[3])
        assert dims[1] == dims[2] == dims[3]                              # In parallel block, we assume dimensions are the same and share the linear transformation.
        assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]
        mlp_hidden_dim = int(dims[1] * mlp_ratios[1])
        self.mlp2 = self.mlp3 = self.mlp4 = Mlp(in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def upsample(self, x, output_size, size):
        """ Feature map up-sampling. """
        return self.interpolate(x, output_size=output_size, size=size)

    def downsample(self, x, output_size, size):
        """ Feature map down-sampling. """
        return self.interpolate(x, output_size=output_size, size=size)

    def interpolate(self, x, output_size, size):
        """ Feature map interpolation. """
        B, N, C = x.shape
        H, W = size
        assert N == 1 + H * W

        cls_token  = x[:, :1, :]
        img_tokens = x[:, 1:, :]
        
        img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W)
        img_tokens = F.interpolate(img_tokens, size=output_size, mode='bilinear')  # FIXME: May have alignment issue.
        img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2)
        
        out = torch.cat((cls_token, img_tokens), dim=1)

        return out

    def forward(self, x1, x2, x3, x4, sizes):
        _, (H2, W2), (H3, W3), (H4, W4) = sizes
        
        # Conv-Attention.
        x2 = self.cpes[1](x2, size=(H2, W2))  # Note: x1 is ignored.
        x3 = self.cpes[2](x3, size=(H3, W3))
        x4 = self.cpes[3](x4, size=(H4, W4))
        
        cur2 = self.norm12(x2)
        cur3 = self.norm13(x3)
        cur4 = self.norm14(x4)
        cur2 = self.factoratt_crpe2(cur2, size=(H2,W2))
        cur3 = self.factoratt_crpe3(cur3, size=(H3,W3))
        cur4 = self.factoratt_crpe4(cur4, size=(H4,W4))
        upsample3_2 = self.upsample(cur3, output_size=(H2,W2), size=(H3,W3))
        upsample4_3 = self.upsample(cur4, output_size=(H3,W3), size=(H4,W4))
        upsample4_2 = self.upsample(cur4, output_size=(H2,W2), size=(H4,W4))
        downsample2_3 = self.downsample(cur2, output_size=(H3,W3), size=(H2,W2))
        downsample3_4 = self.downsample(cur3, output_size=(H4,W4), size=(H3,W3))
        downsample2_4 = self.downsample(cur2, output_size=(H4,W4), size=(H2,W2))
        cur2 = cur2  + upsample3_2   + upsample4_2
        cur3 = cur3  + upsample4_3   + downsample2_3
        cur4 = cur4  + downsample3_4 + downsample2_4
        x2 = x2 + self.drop_path(cur2) 
        x3 = x3 + self.drop_path(cur3) 
        x4 = x4 + self.drop_path(cur4) 

        # MLP. 
        cur2 = self.norm22(x2)
        cur3 = self.norm23(x3)
        cur4 = self.norm24(x4)
        cur2 = self.mlp2(cur2)
        cur3 = self.mlp3(cur3)
        cur4 = self.mlp4(cur4)
        x2 = x2 + self.drop_path(cur2)
        x3 = x3 + self.drop_path(cur3)
        x4 = x4 + self.drop_path(cur4) 

        return x1, x2, x3, x4


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding """
    def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        patch_size = to_2tuple(patch_size)

        self.patch_size = patch_size #4
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)#(3,64,4,4)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        _, _, H, W = x.shape
        out_H, out_W = H // self.patch_size[0], W // self.patch_size[1] #(120,160)/(80,60)

        x = self.proj(x).flatten(2).transpose(1, 2)#(1,19200,64)/(1,4800,128)
        out = self.norm(x)#(1,19200,64)
        
        return out, (out_H, out_W)


class CoaT(nn.Module):
    """ CoaT class. """
    def __init__(self, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[0, 0, 0, 0], 
                 serial_depths=[3,4,6,3], parallel_depth=0,
                 num_heads=0, mlp_ratios=[0, 0, 0, 0], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 return_interm_layers=False, out_features=None, crpe_window={3:2, 5:3, 7:3},
                 **kwargs):
        super().__init__()
        self.return_interm_layers = return_interm_layers
        self.out_features = out_features
        self.num_classes = num_classes #1000

        # Patch embeddings.
        self.patch_embed1 = PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0])
        self.patch_embed2 = PatchEmbed(patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
        self.patch_embed3 = PatchEmbed(patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
        self.patch_embed4 = PatchEmbed(patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])

        # Class tokens.
        self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) #(1,1,64)
        self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1]))#(1,1,128)
        self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2]))
        self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3]))

        # Convolutional position encodings.
        self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) #(64,k=3)
        self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) #(128,k=3)
        self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) #(320,k=3)
        self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) #(512,k=3)

        # Convolutional relative position encodings.
        self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window)
        self.crpe2 = ConvRelPosEnc(Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window)
        self.crpe3 = ConvRelPosEnc(Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window)
        self.crpe4 = ConvRelPosEnc(Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window)

        # Enable stochastic depth.
        dpr = drop_path_rate
        
        # Serial blocks 1.
        self.serial_blocks1 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                shared_cpe=self.cpe1, shared_crpe=self.crpe1
            )
            for _ in range(serial_depths[0])]
        )

        # Serial blocks 2.
        self.serial_blocks2 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                shared_cpe=self.cpe2, shared_crpe=self.crpe2
            )
            for _ in range(serial_depths[1])]
        )

        # Serial blocks 3.
        self.serial_blocks3 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                shared_cpe=self.cpe3, shared_crpe=self.crpe3
            )
            for _ in range(serial_depths[2])]
        )

        # Serial blocks 4.
        self.serial_blocks4 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                shared_cpe=self.cpe4, shared_crpe=self.crpe4
            )
            for _ in range(serial_depths[3])]
        )

        # Parallel blocks.
        self.parallel_depth = parallel_depth
        if self.parallel_depth > 0:
            self.parallel_blocks = nn.ModuleList([
                ParallelBlock(
                    dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                    shared_cpes=[self.cpe1, self.cpe2, self.cpe3, self.cpe4],
                    shared_crpes=[self.crpe1, self.crpe2, self.crpe3, self.crpe4]
                )
                for _ in range(parallel_depth)]
            )

        # Classification head(s).
        if not self.return_interm_layers:
            self.norm1 = norm_layer(embed_dims[0])
            self.norm2 = norm_layer(embed_dims[1])
            self.norm3 = norm_layer(embed_dims[2])
            self.norm4 = norm_layer(embed_dims[3])

            if self.parallel_depth > 0:                                  # CoaT series: Aggregate features of last three scales for classification.
                assert embed_dims[1] == embed_dims[2] == embed_dims[3]
                self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1)
                self.head = nn.Linear(embed_dims[3], num_classes)
            else:
                self.head = nn.Linear(embed_dims[3], num_classes)        # CoaT-Lite series: Use feature of last scale for classification.

        # Initialize weights.
        trunc_normal_(self.cls_token1, std=.02)
        trunc_normal_(self.cls_token2, std=.02)
        trunc_normal_(self.cls_token3, std=.02)
        trunc_normal_(self.cls_token4, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def insert_cls(self, x, cls_token):
        """ Insert CLS token. """
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)#(1,1,64)->(1,1,64)
        x = torch.cat((cls_tokens, x), dim=1) #(1,19201,64)
        return x

    def remove_cls(self, x):
        """ Remove CLS token. """
        return x[:, 1:, :]

    def forward_features(self, x0): #(1,3,482,640)
        B = x0.shape[0]#1

        # Serial blocks 1.
        x1, (H1, W1) = self.patch_embed1(x0) ##(1,19200,64),(120,160)
        x1 = self.insert_cls(x1, self.cls_token1) #(1,19201,64)
        for blk in self.serial_blocks1:
            x1 = blk(x1, size=(H1, W1)) #迭代四次(1,19201,64)
        x1_nocls = self.remove_cls(x1) #(1,19200,64)
        x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() #(1,64,120,160)
        
        # Serial blocks 2.
        x2, (H2, W2) = self.patch_embed2(x1_nocls)#(1,4800,128),(60,80)
        x2 = self.insert_cls(x2, self.cls_token2)#(1,4801,128)
        for blk in self.serial_blocks2:
            x2 = blk(x2, size=(H2, W2)) #(1,4801,128)
        x2_nocls = self.remove_cls(x2) #(1,4800,128)
        x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() #(1,128,60,80)

        # Serial blocks 3.
        x3, (H3, W3) = self.patch_embed3(x2_nocls) #[(1,1200,320),(30,40)]
        x3 = self.insert_cls(x3, self.cls_token3) #(1,1201,320)
        for blk in self.serial_blocks3:
            x3 = blk(x3, size=(H3, W3))#(1,1201,320)
        x3_nocls = self.remove_cls(x3)#(1,1200,320)
        x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()#(1,320,30,40)

        # Serial blocks 4.
        x4, (H4, W4) = self.patch_embed4(x3_nocls)#[(1,300,512),(15,20)]
        x4 = self.insert_cls(x4, self.cls_token4)#(1,301,512)
        for blk in self.serial_blocks4:
            x4 = blk(x4, size=(H4, W4))#(1,301,512)
        x4_nocls = self.remove_cls(x4)#(1,300,512)
        x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()#(1,512,15,20)

        # Only serial blocks: Early return.
        if self.parallel_depth == 0:
            if self.return_interm_layers:   # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
                feat_out = {}   
                if 'x1_nocls' in self.out_features:
                    feat_out['x1_nocls'] = x1_nocls
                if 'x2_nocls' in self.out_features:
                    feat_out['x2_nocls'] = x2_nocls
                if 'x3_nocls' in self.out_features:
                    feat_out['x3_nocls'] = x3_nocls
                if 'x4_nocls' in self.out_features:
                    feat_out['x4_nocls'] = x4_nocls
                return feat_out
            else:                           # Return features for classification.
                x4 = self.norm4(x4) #(1,301,512)
                x4_cls = x4[:, 0]#(1,512),取第一列所有行元素。
                return x4_cls

        # Parallel blocks.
        for blk in self.parallel_blocks:
            x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)])

        if self.return_interm_layers:       # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
            feat_out = {}   
            if 'x1_nocls' in self.out_features:
                x1_nocls = self.remove_cls(x1)
                x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x1_nocls'] = x1_nocls
            if 'x2_nocls' in self.out_features:
                x2_nocls = self.remove_cls(x2)
                x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x2_nocls'] = x2_nocls
            if 'x3_nocls' in self.out_features:
                x3_nocls = self.remove_cls(x3)
                x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x3_nocls'] = x3_nocls
            if 'x4_nocls' in self.out_features:
                x4_nocls = self.remove_cls(x4)
                x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
                feat_out['x4_nocls'] = x4_nocls
            return feat_out
        else:
            x2 = self.norm2(x2)
            x3 = self.norm3(x3)
            x4 = self.norm4(x4)
            x2_cls = x2[:, :1]              # Shape: [B, 1, C].
            x3_cls = x3[:, :1]
            x4_cls = x4[:, :1]
            merged_cls = torch.cat((x2_cls, x3_cls, x4_cls), dim=1)       # Shape: [B, 3, C].
            merged_cls = self.aggregate(merged_cls).squeeze(dim=1)        # Shape: [B, C].
            return merged_cls

    def forward(self, x):
        if self.return_interm_layers:       # Return intermediate features (for down-stream tasks).
            return self.forward_features(x)
        else:                               # Return features for classification.
            x = self.forward_features(x) #(1,512)
            x = self.head(x)#(1,1000)
            return x


# CoaT.
@register_model
def coat_tiny(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

@register_model
def coat_mini(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

@register_model
def coat_small(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

# CoaT-Lite.
@register_model
def coat_lite_tiny(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

@register_model
def coat_lite_mini(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

@register_model
def coat_lite_small(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

@register_model
def coat_lite_medium(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8], parallel_depth=0, num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

def main():

    model = coat_lite_small()  # (传入参数)
    # summary(model,input_size=(3,480,640),device='cpu')
    model.eval()
    rgb_image = torch.randn(1,3, 480, 640)
    with torch.no_grad():
        output = model(rgb_image)
    print(output.shape)
if __name__ == '__main__':
    main()

首先照例看一下框架图:

框架图的每一部分:

 

 

 1:模型首先输入到serial block,在block内,图片首先进行patch embedding。对应于主函数        CoaT的forward_features函数。首先给出CoaT的一些参数,这样就替换掉原始的默认参数。

def coat_lite_small(**kwargs):
    model = CoaT(patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
    model.default_cfg = _cfg_coat()
    return model

在第一个block阶段,patch=4,inchannel=3,embed_dims[0]=64。我们跳到patch embedding函数中。首先获得输出的H和W,原始输入为(1,3,480,640)。接着将输入维度3投射为64,展平,交换1,2位。再经过归一化,那么输出的维度为(1,19200,64)。

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding """
    def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        patch_size = to_2tuple(patch_size)

        self.patch_size = patch_size #4
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)#(3,64,4,4)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        _, _, H, W = x.shape
        out_H, out_W = H // self.patch_size[0], W // self.patch_size[1] #(120,160)/(80,60)

        x = self.proj(x).flatten(2).transpose(1, 2)#(1,19200,64)/(1,4800,128)
        out = self.norm(x)#(1,19200,64)
        
        return out, (out_H, out_W)

然后插入classtoken,classtoken维度为(1,1,64),新的维度为(1,19201,64)。接着就进入了conv-attention block。

2:在第一个阶段有三个serialblock。首先给出block的参数。有8个头,注意shared_cpe=self.cpe1, shared_crpe=self.crpe1这两个重要的函数。

        self.serial_blocks1 = nn.ModuleList([
            SerialBlock(
                dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, 
                shared_cpe=self.cpe1, shared_crpe=self.crpe1
            )
            for _ in range(serial_depths[0])]
        )

我们进入到conv-attention block中:输入的x首先进行卷积位置编码。

class SerialBlock(nn.Module):
    """ Serial block class.
        Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 shared_cpe=None, shared_crpe=None):
        # shared_cpe=self.cpe1, shared_crpe=self.crpe1
        super().__init__()

        # Conv-Attention.
        self.cpe = shared_cpe

        self.norm1 = norm_layer(dim)
        self.factoratt_crpe = FactorAtt_ConvRelPosEnc(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpe)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # MLP.
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, size):
        # Conv-Attention.
        x = self.cpe(x, size)    #[(1,19201,64),(120,160)]/[(1,4801,128),(60,80)]               # Apply convolutional position encoding.
        cur = self.norm1(x)
        cur = self.factoratt_crpe(cur, size) #(1,19201,64)/(1,4801,128)   # Apply factorized attention and convolutional relative position encoding.
        x = x + self.drop_path(cur) #(1,19201,64)/(1,4801,128)

        # MLP. 
        cur = self.norm2(x)
        cur = self.mlp(cur)
        x = x + self.drop_path(cur)

        return x
self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) #(64,k=3)

        卷积位置编码对应于 ConvPosEnc函数。首先获得x的形状,然后取图像的token和class的token。因为在patch embed中我们插入了class token。两个token的维度分别为(1,1,64),(1,19200,64)。接着将图像reshape到原来的形状,进行逐深度卷积。然后再展平为token。与原始的token进行concat。

class ConvPosEnc(nn.Module):
    """ Convolutional Position Encoding. 
        Note: This module is similar to the conditional position encoding in CPVT.
    """
    def __init__(self, dim, k=3):
        super(ConvPosEnc, self).__init__()
        self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) 
    
    def forward(self, x, size):
        B, N, C = x.shape #(1,19201,64)
        H, W = size #(120,160)
        assert N == 1 + H * W

        # Extract CLS token and image tokens.
        cls_token, img_tokens = x[:, :1], x[:, 1:] #(1,1,64),(1,19200,64)   # Shape: [B, 1, C], [B, H*W, C].
        
        # Depthwise convolution.
        feat = img_tokens.transpose(1, 2).view(B, C, H, W)#(1,64,120,160)
        x = self.proj(feat) + feat#(1,64,120,160)
        x = x.flatten(2).transpose(1, 2)

        # Combine with CLS token.
        x = torch.cat((cls_token, x), dim=1)#(1,19201,64)

        return x

3:我们回到原SerialBlock函数中,接着进行归一化,再进行factorized attention mechanism。

        self.factoratt_crpe = FactorAtt_ConvRelPosEnc(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, 
            shared_crpe=shared_crpe)

        首先我们获得qkv。接着分别取第一个维度就是q,k,v。维度为(1,8,19201,8)。根据公式我们要求softmax(K)的转置,然后与V相乘,这里直接用einsum函数得到结果为(1,8,8,8)。然后Q乘以 k_softmax_T_dot_v ,结果再乘以scale函数,得到factor_att。

        接着我们将q和v输入到crep函数。即卷积的相对位置编码。

class FactorAtt_ConvRelPosEnc(nn.Module):
    """ Factorized attention with convolutional relative position encoding class. """
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., shared_crpe=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)                                           # Note: attn_drop is actually not used.
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        # Shared convolutional relative position encoding.
        self.crpe = shared_crpe

    def forward(self, x, size):
        B, N, C = x.shape #(1,19201,64)

        # Generate Q, K, V.
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) #(3,1,8,19201,8) # Shape: [3, B, h, N, Ch].
        q, k, v = qkv[0], qkv[1], qkv[2]     #(1,8,19201,8)                                            # Shape: [B, h, N, Ch].

        # Factorized attention.
        k_softmax = k.softmax(dim=2)                                                     # Softmax on dim N.
        k_softmax_T_dot_v = einsum('b h n k, b h n v -> b h k v', k_softmax, v)  #(1,8,8,8)        # Shape: [B, h, Ch, Ch].
        factor_att        = einsum('b h n k, b h k v -> b h n v', q, k_softmax_T_dot_v) #(1,8,19201,8) # Shape: [B, h, N, Ch].

        # Convolutional relative position encoding.
        crpe = self.crpe(q, v, size=size)      #(1,8,19201,8)                                           # Shape: [B, h, N, Ch].

        # Merge and reshape.
        x = self.scale * factor_att + crpe #(1,8,19201,8)
        x = x.transpose(1, 2).reshape(B, N, C)#(1,19201,64)                                          # Shape: [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C].

        # Output projection.
        x = self.proj(x)#(1,19201,64)
        x = self.proj_drop(x)

        return x                                                                         # Shape: [B, N, C].
self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window)

        在ConvRelPosEnc中,首先指定(Ch, h, window):(8,8,window=crpe_window={3:2, 5:3, 7:3})参数,首先window是一个字典形式,且注意这一句话:

A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})。It will apply different window size to the attention head splits.

这个字典将窗口大小映射为注意力头划分,window size1则注意力头划分为1,window size2则注意力头划分为2,对于注意力头的划分,将会使用不同的窗口大小。

        

 

        遍历字典,我们获得窗口和头划分的大小,第一次遍历cur_window, cur_head_split分别为(3,2)。dialation=1,padding=1,然后cur_conv卷积输入通道16,输出通道16,kernel=3,group=16。第二次遍历:卷积(24,24,k=5,p=2,1,24),第三次遍历:(24,24,k=5,p=2,1,24)。将生成的三个卷积按顺序添加到modul卷积的modulistist中。cur_head_split添加到head_splits空列表中。channel_splits=[16,24,24]。

        回到forward函数中,首先获得不包含class token的q和v。然后将v调整为2d(1,64,120,160)。接着就是将v按通道进行划分。v_img_list包含三个list,维度分别为[(1,16,120,160),(1,24,120,160),(1,24,120,160)]。将每一个list输入到卷积list中的每一个卷积。维度不发生变换。接着将生成的结果按照维度拼接起来。经过reshape又重新回到原图像大小。

        接着将q和逐深度2d卷积结果相乘。结果与0矩阵进行concat。就生成了EV_hat,维度为(1,8,19201,8)。

class ConvRelPosEnc(nn.Module):
    """ Convolutional relative position encoding. """
    def __init__(self, Ch, h, window): #(8,8,window=crpe_window={3:2, 5:3, 7:3})

        """
        Initialization.
            Ch: Channels per head.
            h: Number of heads.
            window: Window size(s) in convolutional relative positional encoding. It can have two forms:
                    1. An integer of window size, which assigns all attention heads with the same window size in ConvRelPosEnc.
                    2. A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})
                       It will apply different window size to the attention head splits.
        """
        #embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs
        super().__init__()

        if isinstance(window, int):
            window = {window: h}                                                         # Set the same window size for all attention heads.
            self.window = window
        elif isinstance(window, dict):
            self.window = window #{3:2, 5:3, 7:3}
        else:
            raise ValueError()            
        
        self.conv_list = nn.ModuleList()
        self.head_splits = []

        for cur_window, cur_head_split in window.items():#(3,2)/(5,3)/(7,3)
            dilation = 1                                                                 # Use dilation=1 at default.
            padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 #(3+(2)*(0))//2 =1     # Determine padding size. Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338
            cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch, #(16,16,k=3,p=1,1,16)/(18,18,k=5,p=2,1,16)
                kernel_size=(cur_window, cur_window),
                padding=(padding_size, padding_size),
                dilation=(dilation, dilation),                          
                groups=cur_head_split*Ch,
            )
            self.conv_list.append(cur_conv)
            self.head_splits.append(cur_head_split)#(2,3,3)
        self.channel_splits = [x*Ch for x in self.head_splits] #ch = 8 , head_splits=[2,3,3]

    def forward(self, q, v, size): #size(q=v)=(1,8,19201,8)
        B, h, N, Ch = q.shape # B:1 h:8 N:19201 Ch:8
        H, W = size #(120,160)
        assert N == 1 + H * W

        # Convolutional relative position encoding.
        q_img = q[:,:,1:,:]#(1,8,19200,8)                                                            # Shape: [B, h, H*W, Ch].
        v_img = v[:,:,1:,:]#(1,8,19200,8)                                                              # Shape: [B, h, H*W, Ch].
        
        v_img = rearrange(v_img, 'B h (H W) Ch -> B (h Ch) H W', H=H, W=W)#(1,64,120,160)            # Shape: [B, h, H*W, Ch] -> [B, h*Ch, H, W].
        v_img_list = torch.split(v_img, self.channel_splits, dim=1)  #channel_splits=[16,24,24]                    # Split according to channels.
        conv_v_img_list = [conv(x) for conv, x in zip(self.conv_list, v_img_list)]#[(1,16,120,160),(1,24,120,160),(1,24,120,160)]
        conv_v_img = torch.cat(conv_v_img_list, dim=1)#(1,64,120,160)
        conv_v_img = rearrange(conv_v_img, 'B (h Ch) H W -> B h (H W) Ch', h=h)#(1,8,19200,8)       # Shape: [B, h*Ch, H, W] -> [B, h, H*W, Ch].

        EV_hat_img = q_img * conv_v_img#(1,8,19200,8)
        zero = torch.zeros((B, h, 1, Ch), dtype=q.dtype, layout=q.layout, device=q.device)#(1,8,1,8)
        EV_hat = torch.cat((zero, EV_hat_img), dim=2)  #(1,8,19201,8)           # Shape: [B, h, N, Ch].

        return EV_hat

         再回到FactorAtt_ConvRelPosEnc函数中,我们将factorized attention和卷积相对位置编码的结果相加。这样conv-attention就计算完毕。将(1,8,19201,8)的大小reshape到(1,19201,64),经过proj。这样FactorAtt_ConvRelPosEnc计算完毕

        再回到SerialBlock,接着我们输送到前向传播模块,经过mlp层,维度由64-512-64。最终x输出为(1,19201,64)。这样SerialBlock计算完毕。

        在整体的CoaT函数中,self.serial_blocks1包含了三个SerialBlock,那么blk会迭代四次,最终的输出大小为(1,19201,64)。移除掉class token,维度变为(1,19200,64)。在reshape为2d图像大小。(1,64,120,160)。同理block的输出作为block的输入,处理流程和block1一样。最终的大小为(1,128,60,80)。block3最终大小为(1,320,30,40)。block4最终大小为(1,512,15,20)。

        其中我们将还未移除classtoken的x4取出(1,301,512),取其第一列所有元素(1,512)。然后经过一个线性层,输出最终的1000类。这样CoaT-lite就计算完毕

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值