异常检测任务中的异常分数
异常检测任务中,异常分数是指什么?有哪些计算方法?
异常分数是一个指标,用于衡量数据点与正常数据点之间的差异程度。得分越高,表示越异常。在异常检测中,我们通常将得分高于某个阈值的数据点视为异常点。常见的异常分数计算方法包括:
- 基于统计方法的异常分数计算:包括基于均值与标准差的z-score、基于百分位数的percentile score等。
- 基于聚类方法的异常分数计算:包括基于K均值聚类算法的silhouette score等。
- 基于分类方法的异常分数计算:包括基于决策树算法的信息熵、Gini系数等。
- 基于回归方法的异常分数计算:包括基于线性回归、逻辑回归等算法的预测误差等。
- 基于深度学习方法的异常分数计算:包括基于自编码器的重构误差、基于变分自编码器的KL散度等。
1. 基于统计方法的异常分数计算:
(1) 基于均值与标准差的z-score:
import numpy as np
def z_score(x):
return (x - np.mean(x)) / np.std(x)
(2) 基于百分位数的percentile score:
import numpy as np
def percentile_score(x, percent):
return np.percentile(x, percent)
2. 基于聚类方法的异常分数计算:
(1) 基于K均值聚类算法的silhouette score:
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
def silhouette_score_cluster(x, n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(x)
return silhouette_score(x, kmeans.predict(x))
3. 基于分类方法的异常分数计算:
(1) 基于决策树算法的信息熵:
from sklearn.tree import DecisionTreeClassifier
from scipy.stats import entropy
def entropy_score(x, y):
clf = DecisionTreeClassifier()
clf.fit(x, y)
return entropy(clf.predict_proba(x).T)
4. 基于回归方法的异常分数计算:
(1) 基于线性回归的预测误差:
from sklearn.linear_model import LinearRegression
def linear_regression_score(x, y):
reg = LinearRegression().fit(x, y)
return np.abs(reg.predict(x) - y)
5. 基于深度学习方法的异常分数计算:
(1) 基于自编码器的重构误差:
from keras.layers import Input, Dense
from keras.models import Model
def autoencoder_score(x):
encoding_dim = 32
input_data = Input(shape=(x.shape[1], ))
encoded = Dense(encoding_dim, activation='relu')(input_data)
decoded = Dense(x.shape[1], activation='sigmoid')(encoded)
autoencoder = Model(input_data, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.fit(x, x, epochs=50, batch_size=32, shuffle=True)
return np.linalg.norm(autoencoder.predict(x) - x, axis=1)
以下是使用PyTorch实现的代码示例:
import torch
import torch.nn as nn
class Autoencoder(nn.Module):
def __init__(self, input_size, hidden_size):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(nn.Linear(input_size, hidden_size),
nn.ReLU())
self.decoder = nn.Sequential(nn.Linear(hidden_size, input_size),
nn.Sigmoid())
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
def anomaly_score(x, model):
x = torch.tensor(x, dtype=torch.float32)
with torch.no_grad():
loss = model(x) - x
loss = torch.mean(torch.pow(loss, 2), dim=1)
return loss
# 训练模型
def train_autoencoder(data_loader, learning_rate, num_epochs):
input_size = data_loader.dataset.tensors[0].shape[1]
hidden_size = 32 # 隐藏层节点数
model = Autoencoder(input_size, hidden_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for data in data_loader:
inputs, _ = data
optimizer.zero_grad()
outputs = model(inputs.float())
loss = criterion(outputs, inputs.float())
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss {:.4f}'.format(epoch+1, num_epochs, loss.item()))
return model
代码分解:
(1)Autoencoder类定义了一个具有单隐藏层的自编码器模型,它有一个编码器和一个解码器,编码器将输入数据压缩成潜在空间表示,解码器则将这个表示转换回原始数据空间。
(2)anomaly_score函数计算输入数据的异常分数,是基于这个自编码器的重构误差计算的。
(3)train_autoencoder函数则训练自编码器模型,使其最小化重构误差。