【题解】【中国大学MOOC】(北京大学)人工智能与信息社会测验——5基于神经网络的智能系统I

本文深入探讨了神经网络的基本概念,包括卷积层在图片边缘特征提取中的作用,前馈型与反馈型神经网络的区别,以及如何构建用于手写数字识别的神经网络。同时,解释了神经网络训练的目标是使损失函数最小化,并介绍了误差反向传播的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.能够提取出图片边缘特征的网络是

编号选项
A全连接层
B池化层
C卷积层
D输出层

2.在手写数字识别的例子中,输入的图片为长和宽都是28像素的图片,输出判断数字0-9的概率。要构建前馈型神经网络去解决这个问题,输入层是()维的,输出层是()维的。

编号选项
A28;10
B28;1
C784;10
D784;1

3.前馈型神经网络的中各个层之间是()的,反馈型神经网络中各个层之间是()的。

编号选项
A无环;无环
B有环;有环
C无环;有环
D有环;无环

4.向量[0.1, 0.1, 0.2, 0.3, 0.6]的维数是多少

编号选项
A5
B10
C3
D1

5.()是用来评估神经网络的计算模型对样本的预测值和真实值之间的误差大小

编号选项
A梯度下降
B优化函数
C反向传播
D损失函数

6.神经网络中各个隐藏层能提取出和人类看到的一样的特征

编号选项
AF
BT

7.人工神经网络训练的目的就是使得损失函数最小化

编号选项
AT
BF

8.误差的反向传播的,即从第一个隐藏层到输出层,逐层修改神经元的连接权值参数,使得损失函数值最小。

编号选项
AT
BF
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值