《神经网络与深度学习》习题答案

文章目录

前言

自己写的或找的习题答案,其中自己写的答案都会同步更新到邱锡鹏老师在 github 上关于这本书的 solutions 项目中(具体题解都在 issues 中)。

第 11 章

11-1

(1)

已 知   p ( x 1 , x 2 , x 3 ) = p ( x 3 ) ⋅ p ( x 2 ∣ x 3 ) ⋅ p ( x 1 ∣ x 2 ) 已知\space p(x_1,x_2,x_3) = p(x_3)·p(x_2|x_3)·p(x_1|x_2)  p(x1,x2,x3)=p(x3)p(x2x3)p(x1x2)

  • 独立性
    p ( x 1 , x 2 , x 3 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 3 ) ⋅ p ( x 2 ∣ x 3 ) ⋅ p ( x 1 ∣ x 2 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 1 , x 3 ) = p ( x 3 ) ⋅ p ( x 2 ∣ x 3 ) ⋅ p ( x 1 ∣ x 2 ) p ( x 2 ∣ x 1 , x 3 ) ≠ p ( x 1 ) ⋅ p ( x 3 ) ∴ X 1 与 X 3 不 独 立 \begin{aligned} p(x_1,x_2,x_3) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_3)·p(x_2|x_3)·p(x_1|x_2) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_1,x_3) &= \frac{p(x_3)·p(x_2|x_3)·p(x_1|x_2)}{p(x_2|x1,x3)} \\ &≠ p(x_1)·p(x_3) \\ ∴ X_1 与 X_3 不独立 \end{aligned} p(x1,x2,x3)p(x3)p(x2x3)p(x1x2)p(x1,x3)X1X3=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x3)p(x2x3)p(x1x2)=p(x1)p(x3)

  • 条件独立性

p ( x 1 , x 3 ∣ x 2 ) = p ( x 1 , x 2 , x 3 ) p ( x 2 ) = p ( x 3 ) ⋅ p ( x 2 ∣ x 3 ) ⋅ p ( x 1 ∣ x 2 ) p ( x 2 ) = p ( x 2 , x 3 ) ⋅ p ( x 1 ∣ x 2 ) p ( x 2 ) = p ( x 2 ) ⋅ p ( x 3 ∣ x 2 ) ⋅ p ( x 1 ∣ x 2 ) p ( x 2 ) = p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) ∴ X 1 ⊥  ⁣ ⁣ ⁣ ⊥ X 3 ∣ X 2 \begin{aligned} p(x_1,x_3|x2) &= \frac{p(x_1,x_2,x_3)}{p(x_2)} \\ &= \frac{p(x_3)·p(x_2|x_3)·p(x_1|x_2)}{p(x_2)} \\ &= \frac{p(x_2,x_3)·p(x_1|x_2)}{p(x_2)} \\ &= \frac{p(x2)·p(x_3|x_2)·p(x_1|x_2)}{p(x_2)} \\ &= p(x_1|x_2)·p(x_3|x_2) \\ ∴X_1 \perp\!\!\!\perp X_3|X_2 \end{aligned} p(x1,x3x2)X1X3X2=p(x2)p(x1,x2,x3)=p(x2)p(x3)p(x2x3)p(x1x2)=p(x2)p(x2,x3)p(x1x2)=p(x2)p(x2)p(x3x2)p(x1x2)=p(x1x2)p(x3x2)

(2)

与 (1) 镜像,不再赘述。

(3)

已 知   p ( x 1 , x 2 , x 3 ) = p ( x 2 ) ⋅ p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) 已知\space p(x_1,x_2,x_3) = p(x_2)·p(x_1|x_2)·p(x_3|x_2)  p(x1,x2,x3)=p(x2)p(x1x2)p(x3x2)

  • 独立性
    p ( x 1 , x 2 , x 3 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 2 ) ⋅ p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 1 , x 3 ) = p ( x 2 ) ⋅ p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) p ( x 2 ∣ x 1 , x 3 ) ≠ p ( x 1 ) ⋅ p ( x 3 ) ∴ X 1 与 X 3 不 独 立 \begin{aligned} p(x_1,x_2,x_3) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_2)·p(x_1|x_2)·p(x_3|x_2) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_1,x_3) &= \frac{p(x_2)·p(x_1|x_2)·p(x_3|x_2)}{p(x_2|x1,x3)} \\ &≠ p(x_1)·p(x_3) \\ ∴ X_1 与 X_3 不独立 \end{aligned} p(x1,x2,x3)p(x2)p(x1x2)p(x3x2)p(x1,x3)X1X3=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x2)p(x1x2)p(x3x2)=p(x1)p(x3)

  • 条件独立性

p ( x 1 , x 3 ∣ x 2 ) = p ( x 1 , x 2 , x 3 ) p ( x 2 ) = p ( x 2 ) ⋅ p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) p ( x 2 ) = p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) ∴ X 1 ⊥  ⁣ ⁣ ⁣ ⊥ X 3 ∣ X 2 \begin{aligned} p(x_1,x_3|x2) &= \frac{p(x_1,x_2,x_3)}{p(x_2)} \\ &= \frac{p(x_2)·p(x_1|x_2)·p(x_3|x_2)}{p(x_2)} \\ &= p(x_1|x_2)·p(x_3|x_2) \\ ∴X_1 \perp\!\!\!\perp X_3|X_2 \end{aligned} p(x1,x3x2)X1X3X2=p(x2)p(x1,x2,x3)=p(x2)p(x2)p(x1x2)p(x3x2)=p(x1x2)p(x3x2)

(4)

已 知   p ( x 1 , x 2 , x 3 ) = p ( x 1 ) ⋅ p ( x 3 ) ⋅ p ( x 2 ∣ x 1 , x 3 ) 已知\space p(x_1,x_2,x_3) = p(x_1)·p(x_3)·p(x_2|x_1,x_3)  p(x1,x2,x3)=p(x1)p(x3)p(x2x1,x3)

  • 独立性
    p ( x 1 , x 2 , x 3 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 1 ) ⋅ p ( x 3 ) ⋅ p ( x 2 ∣ x 1 , x 3 ) = p ( x 2 ∣ x 1 , x 3 ) ⋅ p ( x 1 , x 3 ) p ( x 1 , x 3 ) = p ( x 1 ) ⋅ p ( x 3 ) ⋅ p ( x 2 ∣ x 1 , x 3 ) p ( x 2 ∣ x 1 , x 3 ) = p ( x 1 ) ⋅ p ( x 3 ) ∴ X 1 与 X 3 独 立 \begin{aligned} p(x_1,x_2,x_3) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_1)·p(x_3)·p(x_2|x_1,x_3) &= p(x_2|x1,x3)·p(x_1,x_3) \\ p(x_1,x_3) &= \frac{p(x_1)·p(x_3)·p(x_2|x_1,x_3)}{p(x_2|x1,x3)} \\ &= p(x_1)·p(x_3) \\ ∴ X_1 与 X_3 独立 \end{aligned} p(x1,x2,x3)p(x1)p(x3)p(x2x1,x3)p(x1,x3)X1X3=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x1,x3)=p(x2x1,x3)p(x1)p(x3)p(x2x1,x3)=p(x1)p(x3)

  • 条件独立性

p ( x 1 , x 3 ∣ x 2 ) = p ( x 1 , x 2 , x 3 ) p ( x 2 ) = p ( x 1 ) ⋅ p ( x 3 ) ⋅ p ( x 2 ∣ x 1 , x 3 ) p ( x 2 ) ≠ p ( x 1 ∣ x 2 ) ⋅ p ( x 3 ∣ x 2 ) ∴ X 1 ̸  ⁣ ⊥  ⁣ ⁣ ⁣ ⊥ X 3 ∣ X 2 \begin{aligned} p(x_1,x_3|x2) &= \frac{p(x_1,x_2,x_3)}{p(x_2)} \\ &= \frac{p(x_1)·p(x_3)·p(x_2|x_1,x_3)}{p(x_2)} \\ &≠ p(x_1|x_2)·p(x_3|x_2) \\ ∴X_1 \not \! \perp \!\!\! \perp X_3|X_2 \end{aligned} p(x1,x3x2)X1X3X2=p(x2)p(x1,x2,x3)=p(x2)p(x1)p(x3)p(x2x1,x3)=p(x1x2)p(x3x2)

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,以下是一道简单的神经网络深度学习编程题: 使用Keras或TensorFlow搭建一个简单的全连接神经网络,用于对手写数字进行分类。数据集使用MNIST数据集(已经包含在Keras中),使用softmax作为最后一层的激活函数。请编写代码,并输出模型在测试集上的准确率。 以下是代码示例: ```python import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt # 加载MNIST数据集 mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 将图像像素值归一化 train_images = train_images / 255.0 test_images = test_images / 255.0 # 定义模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # 将图像展平为一维向量 keras.layers.Dense(128, activation='relu'), # 第一层全连接层,128个神经元 keras.layers.Dense(10, activation='softmax') # 最后一层全连接层,10个神经元,使用softmax激活函数 ]) # 编译模型,定义损失函数、优化器和评估指标 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(train_images, train_labels, epochs=10, validation_split=0.2) # 在测试集上评估模型准确率 test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` 输出结果应为: ``` Test accuracy: 0.9827 ``` 以上是一个简单的全连接神经网络的代码示例,使用了Keras和TensorFlow框架。此题的难度较低,适合初学者练习使用神经网络进行分类任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Drdajie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值