贝叶斯分类器

一、贝叶斯决策论

样本x在分类为ci所产生的期望损失(条件风险):
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、两类错误率

根据贝叶斯决策理论可知,使错误率最小的决策就是使后验概率最大的决策
1.最小错误率贝叶斯决策:
在这里插入图片描述
2.最小风险贝叶斯决策:

①计算后验概率:
在这里插入图片描述
其中要求先验概率和类条件概率已知。
②计算条件风险:
在这里插入图片描述
③决策:选择风险最小的决策
在这里插入图片描述

三、极大似然估计

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

四、贝叶斯估计

不再把参数看成一个未知的确定变量,而是看成未知的随机变量。贝叶斯估计的本质:贝叶斯估计的本质是通过贝叶斯决策得到参数的最优估计,使得总期望风险最小。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、贝叶斯学习

在这里插入图片描述

六、朴素贝叶斯分类器——基于属性条件独立性假设

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

七、半朴素贝叶斯分类器——基于属性条件非独立性假设(简介)

在这里插入图片描述
在这里插入图片描述

八、贝叶斯网(信念网)

1.结构

在这里插入图片描述
在这里插入图片描述
典型结构:
在这里插入图片描述
同父结构:x1确定时,x3和x4条件独立;x1不确定时,x3和x4不条件独立;
顺序结构:x确定时,y和z条件独立;x不确定时,y和z不条件独立;
V型结构:x4确定时,x1和x2必不独立;x4不确定时,y和z条件独立。

道德图在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.学习——最小长度描述准则(MDL):

在这里插入图片描述
注:PB由经验估计(计算方法自行构造)获得,与D上的经验分布有关。

3.推断——吉布斯采样

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值