一、贝叶斯决策论
样本x在分类为ci所产生的期望损失(条件风险):
二、两类错误率
根据贝叶斯决策理论可知,使错误率最小的决策就是使后验概率最大的决策
1.最小错误率贝叶斯决策:
2.最小风险贝叶斯决策:
①计算后验概率:
其中要求先验概率和类条件概率已知。
②计算条件风险:
③决策:选择风险最小的决策
三、极大似然估计
四、贝叶斯估计
不再把参数看成一个未知的确定变量,而是看成未知的随机变量。贝叶斯估计的本质:贝叶斯估计的本质是通过贝叶斯决策得到参数的最优估计,使得总期望风险最小。
五、贝叶斯学习
六、朴素贝叶斯分类器——基于属性条件独立性假设
七、半朴素贝叶斯分类器——基于属性条件非独立性假设(简介)
八、贝叶斯网(信念网)
1.结构
典型结构:
同父结构:x1确定时,x3和x4条件独立;x1不确定时,x3和x4不条件独立;
顺序结构:x确定时,y和z条件独立;x不确定时,y和z不条件独立;
V型结构:x4确定时,x1和x2必不独立;x4不确定时,y和z条件独立。
道德图:
2.学习——最小长度描述准则(MDL):
注:PB由经验估计(计算方法自行构造)获得,与D上的经验分布有关。