高等数学(第三章:一元积分学 ① )


一、不定积分的计算

1. 常见公式总结



【注】:常用的公式要熟稔于心,实在背不下来的式子要熟练掌握其推导方法。

  • 有理式:包括分式和整式,这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算,它也可以化为两个多项式的商。

  • 无理式:含有关于字母开方运算的代数式称为无理式。

2. 凑微分法

考虑对复杂式子进行求导,去找出和其他式子的联系!

常见的凑微分示例:

【注】:一定不要忘记 +C !!!

3. 指数函数

1)做题技巧(预处理)

  • I、去指数:如果被积函数 f(x) = g(ex) ,令 ex = t ,则 ∫f(x)dx = ∫g(ex)dx = ∫[g(t)/t]dt ,达到去指数的作用。

  • II、添项减项(“1”的处理)。

  • III、若为分式,则可以考虑上下同除 ex 或 e2x 等。

2)示例

4. 无理函数(根式代换和三角换元)

该类积分的处理思想就是去根号变成有理函数的积分(根式代换)。

  • 如果被积函数中含有 n√(ax+b) ,则令 n√(ax+b) = t ;

  • 如果被积函数中同时含有 n√(ax+b) , m√(ax+b) ,则令 l√(ax+b) = t(l 为 m 和 n 的最小公倍数);

  • 如果被积函数中含有 n√(ax+b)/(cx+d) ,则令 n√(ax+b)/(cx+d) = t ;

  • 如果被积函数中含有 √(ax2+bx+c) ,此时有两种处理方法去根号有理化:欧拉代换和三角代换。

1)欧拉代换

2)三角代换

见到 “平方 ± 平方” 想到三角换元。
重点在于:怎么换元?怎么换回来?

  • sin2x + cos2x = 1 ;tan2x + 1 = sec2x ;cot2x + 1 = csc2x 。

  • 如果出现了 √(1-x2) 和 arcsinx ,则令 arcsinx = t ,得 x = sint ,√(1-x2) = cost(去根号);

  • 如果出现了 √(1+x2) 和 arctanx ,则令 arctanx = t ,得 x = tant ,√(1+x2) = sect 。

5. 三角有理式

1)偶降奇提

2)类型总结

  • ∫ 1/(1+sinx) dx 型
    平方差公式
    (1 + cosx) · (1 - cosx) = 1 - cos2x = sin2x ;
    (1 + sinx) · (1 - sinx) = 1 - sin2x = cos2x 。
    倍角公式
    sinx = 2 · sin(x/2) · cos(x/2) ;
    cosx = 2 · cos2(x/2) - 1 = 1 - 2 · sin2(x/2) 。

  • ∫ 1/(sinx+cosx) dx 型
    辅助角公式:(简化分母)
    a·sin(α) + b·cos(α) = (√(a2 + b2))·sin[α + arctan(b/a)](a > 0);
    a·sin(α) + b·cos(α) = (√(a2 + b2))·cos[α - arctan(b/a)](b > 0)。

  • ∫ (asinx+bcosx)/(sinx+cosx) dx 型
    待定系数法:分子拆分为分母与分母的导数之和
    即:asinx+bcosx = A(sinx + cosx) + B(sinx + cosx)’ = (A - B) · sinx + (A + B) · cosx ,
    有 A - B = a 、A + B = b ,解出 A 、B 。

【拓展】:形式待定

  • ∫ (px+q)/√(ax2+bx+c) dx 型(a ≠ 0)

  • ∫ (csinx+dcosx)/(asinx+bcosx) dx 型(a2 + b2 ≠ 0)

  • ∫ eλx·[pcoskx+qsinkx] dx 型

  • ∫ eλx·[P1(x)coskx+P2(x)sinkx] dx 型

  • ∫ f(x)/g2(x) dx 型

  • ∫ f(x)·eg(x) dx 型

3)提前预判

4)齐次同除

若 R(-sinx, -cosx) = R(sinx, cosx) ,或分式的分母齐次,则可使用齐次同除法。

  • 分式上下同除 cos2x ;

  • 常数变成 cos-2x = sec2x 、sin2x 变成 tan2x 、cos2x 变成常数;

  • sec2x 凑成 d(tanx) ;

  • sec2x 变为 tan2x + 1 。

下面举一个例子:

5)万能代换

6)技巧

  • 对于三角有理函数,可以利用 “积化和差” 和 “降幂公式” 来实现降次。

  • “1” 的处理
    ① 添项减项,然后拆分成多个式子进行计算;
    ② sin2x + cos2x = 1 、tan2x + 1 = sec2x 、cot2x + 1 = csc2x 。

6. 分部积分(表格积分法)

1)利用分部积分实现降次(去分母)

特别地,对于形如 ∫(f/g2)dx 的积分,可以考虑强行凑 d(1/g) 得 ∫(-f/g’)d(1/g) 。

2)利用分部积分法产生递推公式

求出递推公式之后,再利用递推公式就可以求出通项公式,一般来讲,题目不会要你求出不定积分的通项公式(因为表达式太复杂了),只要你求出某一项!

求含有 n 的不定积分或定积分如下的一种方法:

  • 第一步:利用分部积分法产生递推公式;

  • 第二步:利用递推公式推出通项公式。

3)局部利用分部积分法

当整体不好利用分部积分法时,可以考虑对局部利用分部积分法,对其中一部分利用分部积分法然后和另外一部分进行抵消。

4)表格积分法原理及应用

5)技巧

  • 常数化简:
    ∫ln(1+x)dx = ∫ln(1+x)d(1+x) = (1+x)·ln(1+x) - ∫1dx(分部积分法)= (1+x)·ln(1+x) - x 。

  • 循环积分 ∫(eax·sinbx)dx:除了使用分部积分法外,还可以使用公式

    【注】:常见的循环积分还有:∫sec3xdx 、√(x2+a2)dx 等。

  • 常规积分:常与 “换元” 相结合。
    【注】:换元时令 t = f(x) ,反解出 x = g(t) ,使用分部积分法时,不一定要解出 dx ,转而直接使用分部积分更方便。下面举出一个示例:

7. 有理函数

无理函数积分通常的处理手法是:去根号变有理函数的积分;三角有理函数积分通常的处理手法是:去三角变有理函数的积分。所以说有理函数的积分是最要的一部分!

【注】:大家在做题时需要牢记一个小技巧,被积函数中出现了复合函数 f(g(x)) ,一般令内层函数 g(x) = t ,去复合,简化被积函数!

1)有理函数的积分


【总结】:

  • 拆假分式(长除法);
    例如:由于 2x3+x-3 除以 x2+1 得 2x 余 -x-3 ,因此 (2x3+x-3)/(x2+1) = 2x - (x+3)/(x2+1) 。

  • 拆真分式(因式分解)+ 定系数。
    ① 分母含 ax+b → A/(ax+b)
    ② 分母含 (ax+b)2 → A1/(ax+b) + A2/(ax+b)2
    ③ 分母含 ax2+bx+c → (Ax+B)/(ax2+bx+c)
    ④ 分母含 (ax2+bx+c)2 → (Ax+B)/(ax2+bx+c) + (Cx+D)/(ax2+bx+c)2
    定系数的方法有:通分列方程组来待定系数、留数法、求谁挡谁代谁、代特殊值、极限法。

【注】:分母为 ax2+bx+c 时,若 Δ = b2-4ac > 0 ,则化为平方和,例如 (Ax+B)2 ;若 Δ < 0 ,则拆解为 (Cx+D)/(ax2+bx+c) 。

“通分来待定系数” 的方法对于复杂式子来说计算麻烦,“留数法” 大家感兴趣的话可以自行查找资料学习。下面介绍使用起来比较简单方便的 “求谁挡谁代谁” 法、 “代特殊值” 法和 “极限” 法。

I、“求谁挡谁代谁” 法

假设把 A/(ax+b)(cx+d) 拆分为 B/(ax+b) + C/(cx+d) 。“求谁挡谁代谁” 的意思是:挡住原式中被求分子的分母部分(例如求 B 值时,原式变为 A/■(cx+d) ),将使得该分母为 0 的值( ax+b=0 得到 x=-b/a )代入被遮挡的原式中( x=-b/a 代入 A/■(cx+d) ),得到的值就是被求分子的值( B=A/[c·(-b/a)+d] )。

II、“代特殊值” 法

假设把 Ax/(ax+b)(cx2+dx+e) 拆分为 B/(ax+b) + (Cx+D)/(cx2+dx+e) 。B 的值可以通过 “求谁挡谁代谁” 法进行求解,求出 B 后可以通过代入特殊值,例如 x = 0 求出 D 的值,即:0 = B/b + D/e ,从而求出 D = -B·e/b 。

III、“极限” 法

假设把 Ax/(ax+b)(cx2+dx+e) 拆分为 B/(ax+b) + (Cx+D)/(cx2+dx+e) 。B 的值可以通过 “求谁挡谁代谁” 法进行求解,求出 B 后将等式两边同时乘 x ,即 Ax2/(ax+b)(cx2+dx+e) = Bx/(ax+b) + (Cx2+Dx)/(cx2+dx+e) ,当 x → +∞ 时,等式两边取极限得到:0 = B + C/c ,从而求出 C = -B·c 。

下面举几个例子:

【注】:需要有 “广义化” 的思想,例如:求 ∫1/[x2(1+x2)(1-x2)]dx 时可以把 x2 看成一个整体 u ,那么 1/[x2(1+x2)(1-x2)] 可以看成 1/[u(1+u)(1-u)] ,从而拆解为 A/u + B/(1+u) + C/(1-u) ,用 “求谁挡谁代谁” 法求出 A、B、C 的值后,再将 u 换成 x2 即可。1/[x2(1+x2)(1-x2)] = 1/x2 - (1/2)/(1+x2) + (1/2)/(1-x2) 。

【总结】:

  • 分子为常数,分母的最高次数为 2:∫C/(ax2+bx+c)
    方法:将分母 ax2+bx+c 转换为 (dx+e)2+f2 的形式,然后套用公式 ∫1/(x2+a2)=(1/a)arctan(x/a)+C。

  • 分子的最高次数为 1 ,分母的最高次数为 2:∫(Ax+B)/(ax2+bx+c)
    方法:A·x + B = C1·(ax2+bx+c)’ + C2 = 2aC1x + bC1 + C2

  • 分子为常数,分母为 (▲)2:∫C/(ax+b)2

【拓展】:常见的恒等变形

  • 添项减项,以迎合分母。例如:∫1/(1+ex)dx = ∫(1+ex-ex)/(1+ex)dx = x-∫ex/(1+ex)dx 。

  • 分式上下同乘或同除。例如:齐次同除、去根号、∫(x2+1)/(x4+1)dx 等。

  • “1” 的处理。

2)倒代换

8. 组合积分法

难点在于:构造一个新积分 J 以及构造出线性组合的系数。

【总结】:

  • 三角有理式:∫(c·sinx+d·cosx)/(a·sinx+b·cosx)dx 、∫(c·sin2x+d·cos2x)/(a·sinx+b·cosx)dx 、∫(a·sin3x+b·cos3x)/(sinx+cosx)dx
    需要利用到:sin2x + cos2x = 1 、平方差公式、立方和公式。
    【a3+b3=(a+b)·(a2-ab+b2) 、a3-b3=(a-b)·(a2+ab+b2)】。

  • 指数有理式:∫(c·ex+d·e-x)/(a·ex+b·e-x)dx

  • 有理函数

例题:

二、定积分的计算

1. 牛顿-莱布尼兹公式

牛顿-莱布尼兹公式:如果 F(x) 是连续函数 f(x) 在区间 [a, b] 上的一个原函数,则:

ab f(x) dx = F(x)|ab = F(b) - F(a)

【注】:f(x) 在区间内必须是连续函数!例如:∫-11 (1/x) dx = ln|x||-11 = 0 是错误的,因为 x = 0 对于 1/x 来说是一个无定义的点,因此在区间 [-1, 1] 上 1/x 不是连续函数。

正确的做题方法是什么?

  • ① 若无定义的点在区间端点处:正常计算(取极限);

  • ② 若无定义的点在区间内:拆分区间,使无定义的点处于拆分后的区间的端点处。

下面举几个例子:

2. 奇偶性、周期性与几何性质

1)奇偶性(积分上限与积分下限互为相反数)

【注】:对称区间下:∫-aa f(x) dx = ∫0a [f(x)+f(-x)] dx 。

③ 奇函数 × 奇函数 = 偶函数;偶函数 × 偶函数 = 偶函数;奇函数 × 偶函数 = 奇函数。

④ 复合函数的奇偶性:F(x) = f(g(x)) ,即 y = f(u) , u = g(x)

  • 若 f(u) 是奇函数,g(x) 是偶函数,则 F(x) 为偶函数;

  • 若 f(u) 是偶函数,g(x) 是奇函数,则 F(x) 为偶函数;

  • 若 f(u) 是奇函数,g(x) 是奇函数,则 F(x) 为奇函数;

  • 若 f(u) 是偶函数,g(x) 是偶函数,则 F(x) 为偶函数。

复合函数的奇偶性可以利用口诀:“一偶全偶” 来记忆。如果实在没有记住,可以举一些简单例子来佐证,例如:假设 f(u) = u(奇)、g(x) = x2(偶),那么 F(x) = x2(偶)。

2)周期性(积分上限减积分下限等于一个周期)

对称、平移及周期函数在定积分中的应用:

【注】:周期性判断:f(x+T) = f(x)

周期函数在一个周期上的积分值与起点无关,即无论 a 值是多少,最后的积分值都等于 ∫0Tf(x)dx ,例如:函数 cos2x 的周期为 π ,有 ∫π/45π/4cos2xdx = ∫0πcos2xdx = 2·∫0π/2cos2xdx = π/2 。

3)几何性质

  • 0π sinx dx = ∫-π/2π/2 cosx dx = 2( sinx 、cosx 图像中 “一拱” 的面积为 2 )

  • 01 √(1-x2) dx = π/4(可以看成 x2 + y2 = 1 (x, y ≥ 0) 的面积,即 1/4 的半径为 1 的圆面积)

  • 0a √(a2-x2) dx = (π/4)a2(可以看成 x2 + y2 = a2 (x, y ≥ 0) 的面积,即 1/4 的半径为 a 的圆面积)

【拓展】:

√(1-sin2x) = √(sin2x+cos2x-2·sinx·cosx) = √(sinx-cosx)2 = |sinx-cosx| ;
同理,√(1-sinx) = |sin(x/2)-cos(x/2)| 。

3. 换元技巧

换元有三换:积分上下限、函数部分、微分部分。

例如:令 t = f(x) 并反解出 x = g(t) ,则 ∫ab f(x) dx = ∫f(a)f(b) t d[g(t)] 。

下面举几个例子:

  • 0x f(x-t) dt 令 u = x - t ,原式 = ∫x0 f(u) d(x-u) = ∫0x f(u) du

  • 0x t·f(x-t) dt 令 u = x - t ,原式 = ∫x0 (x-u)·f(u) d(x-u) = x·∫0x f(u) du - ∫0x u·f(u) du

  • 0x t·f(x2-t2) dt 令 u = x2 - t2 ,原式 = (1/2)·∫0x2 f(u) du

【换元技巧】:

  • 02 √[1-(x-1)2] dx = ∫-11 √(1-x2) dx(令 x - 1 为一个整体)

  • 0x f(t-x) dt = ∫-x0 f(t) dt(令 t - x 为一个整体)

  • 01 f(t·x) dt = (1/x)·∫0x f(t) dt(令 t · x 为一个整体)

  • 0x2 f(t/x) dt = x·∫0x f(t) dt(令 t / x 为一个整体)

  • 0π sin(x/2) dx = 2·∫0π/2 sin(x) dx(令 x / 2 为一个整体)
    [易错]:∫0π sin(x/2) dx = 2·∫0π sin(x/2) d(x/2) ≠ 2·∫0π sin(t) d(t)

下面举几个例子:

4. 区间再现公式

把 x 换成:上限 + 下限 - x 。如何证明?令 t = a + b - x 即可。

区间再现公式的几何意义:函数 f(x) 与 f(a+b-x) 在区间 [a, b] 上关于 x = (a+b)/2 对称,此时在区间 [a, b] 内,函数 f(x) 与 x 轴围成的面积和 f(a+b-x) 与 x 轴围成的面积是相等的,因此 ∫ab f(x) dx = ∫ab f(a+b-x) dx 。

【拓展】:

区间再现公式的另一个作用是:消去 x 。

  • 当 f(x) = x·g(x)(其中 g(x) 满足 g(x) = g(a+b-x))时:
    ab x·g(x) dx = ∫ab (a+b-x)·g(a+b-x) dx = [(a+b)/2]·∫ab g(x) dx

  • 0x t·f(x-t) dt 利用区间再现公式为:∫0x (x-t)·f(t) dt = x·∫0x f(t) dt - ∫0x t·f(t) dt 。

【注】:只要原函数不好求,就可以考虑使用区间再现公式。

5. 倒代换公式

6. 利用分部积分法进行降阶与升阶求定积分

【注】:证明 “点火公式” 就用这个方法,利用分部积分法产生递推公式。
例如:In = ∫0π/2 sinnx dx = -∫0π/2 sinn-1x d(cosx) = …(分部积分),最后得到 In = [(n-1)/n]·In–2

7. “葵花点穴手”

  • 轴对称:f(a+x) = f(b-x)【对称轴为 x = (a+b)/2】
    在区间 [-a, a] 内的偶函数是轴对称图形,关于 y 轴(x = 0)对称。

  • 中心对称:f(a+x) + f(b-x) = c【对称中心为 ((a+b)/2, c/2)】
    在区间 [-a, a] 内的奇函数是中心对称图形,关于 (0, 0) 中心对称。
    注:在任何区间内 y = x 都是中心对称图形。

8. 点火公式

常规版:

进阶版:

9. 分段函数、最值函数求定积分

1)分段函数求定积分

技巧就是:拆分积分区间。必要时可以先对积分进行换元处理。

例如:求 I = ∫02 f(x-1) dx ,其中:当 x ≥ 0 时 f(x) = A ,当 x < 0 时 f(x) = B 。

【解析】:通过换元可以得到:I = ∫02 f(x-1) dx = ∫-11 f(x) dx ,然后划分积分区间:I = ∫-10 f(x) dx + ∫01 f(x) dx = ∫-10 B dx + ∫01 A dx 。

2)符号函数求定积分

接下来讲带 “绝对值” 符号、“取整” 符号、“最大值最小值” 符号的积分。

  • 绝对值符号的积分:这类积分一般都是要对积分区间进行划分,去绝对值符号。

  • 取整符号:这类积分一般都是要去取整符号。
    例如:令 [2x] = k ,得 k ≤ 2x < k+1 ,有 lnk/ln2 ≤ x < ln(k+1)/ln2 ,从而对积分区间进行划分。

  • 最大值最小值符号的积分(本质还是分段函数):可以结合图形进行处理。

10. 其他技巧

1)定积分的本质是个数

把定积分当作一个常数来看待,比如令 ∫ab f(x) dx = A 。

下面举一个例子:

2)有关 ∫01 |t - x| dx 的类型

方法:在 ∫01 |t - x| dx 中,x 的取值范围是 [0, 1] ,而 t 的取值范围是 (-∞, +∞) 。可以推断出:

  • 在 t < 0 时必有 x > t(即 ∫01 |t - x| dx = ∫01 x - t dx);

  • 在 t > 1 时必有 t > x(即 ∫01 |t - x| dx = ∫01 t - x dx);

  • 而 t ∈ [0, 1] 时,又分为以下两种情况:
    x ∈ [0, t] 时,有 t > x(即 ∫0t |t - x| dx = ∫0t t - x dx);
    x ∈ [t, 1] 时,有 x > t(即 ∫t1 |t - x| dx = ∫t1 x - t dx)。

例题

3)循环公式

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kusunoki_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值