Python做数据处理

Python做数据匹配

本文仅仅记录根据需求所需要的用法,对pandas并无详细的介绍。
详细的资料可以查阅pandas中文文档

一、需要满足的需求:将两个数据库进行内联
二、需要用到的包:pandas、fuzzywuzzy(进行字符串的模糊匹配)

安装非常容易pip一下就完事了
Pandas用于数据库的处理等都非常的方便
通常的用法是
pandas将数据库数据封装进DataFrame对象

pandas

#导入pandas包的标准用法
import pandas as pd

pandas的具体函数使用:

#新建DataFrame
df_empty=pd.DataFrame(columns=[...],index=[...])
#从文件中读取数据
df_empty=pd.read_csv('xx.csv')
df_empty=pd.read_stata('xx.dta')
df_empty=pd.read_txt('xx.txt')
#将数据导入文件中
df.to_csv('xx.csv')
df.to_stata('xx.dta')

记录一下pandas的DataFrame做数据清洗的操作

df.dropna()  #去除所有存在空值的行得到子DF
df.dropna(how = 'all')  #去除全为空值的行
df.dropna(axis = 1,how = 'all')  #去除全为空值的列
df.dropna(thresh = 3)  #去除空值数大于3的行
df.dropna(subset = ['xx'])  #去除指定列存在空值的

fuzzywuzzy

fuzzywuzzy详细介绍

futures

futures详细介绍
Python做数据匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值