常用等价无穷小以及泰勒公式
常用等价无穷小 x→0x\to 0x→0
sinx∼xtanx∼xarcsinx∼xarctanx∼xln(1+x)∼xex−1∼xax−1∼xlna1−cosx∼12x2(1+x)a−1∼ax \begin{aligned} &sinx\sim x\\ &tanx\sim x\\ &arcsinx\sim x\\ &arctanx \sim x\\ &ln(1+x)\sim x\\ &e^x-1\sim x\\ &a^x-1\sim xlna\\ &1-cosx\sim\frac{1}{2}x^2\\ &(1+x)^a-1\sim ax \end{aligned} sinx∼xtanx∼xarcsinx∼xarctanx∼xln(1+x)∼xex−1∼xax−1∼xlna1−cosx∼21x2(1+x)a−1∼ax
注:可以将x适度广义化
常用泰勒展开式 x→0x\to 0x→0
sinx=x−13!x3+o(x3)cosx=1−12!x2+14!x4+o(x4)arcsinx=x+13!x3+o(x3)tanx=x+13x3+o(x3)arctanx=x−13x3+0(x3)ex=1+x+12!x2+13!x3+o(x3)ln(1+x)=x−12x2+13x3+o(x3)(1+x)a=1+ax+a(a−1)2!x2+o(x2) \begin{aligned} &sinx=x-\frac{1}{3!}x^3+o(x^3)\\ &cosx=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+o(x^4)\\ &arcsinx=x+\frac{1}{3!}x^3+o(x^3)\\ &tanx=x+\frac{1}{3}x^3+o(x^3)\\ &arctanx=x-\frac{1}{3}x^3+0(x^3)\\ &e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+o(x^3)\\ &ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3)\\ &(1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+o(x^2) \end{aligned} sinx=x−3!1x3+o(x3)cosx=1−2!1x2+4!1x4+o(x4)arcsinx=x+3!1x3+o(x3)tanx=x+31x3+o(x3)arctanx=x−31x3+0(x3)ex=1+x+2!1x2+3!1x3+o(x3)ln(1+x)=x−21x2+31x3+o(x3)(1+x)a=1+ax+2!a(a−1)x2+o(x2)
可以将x适度广义化
泰勒公式展开原则
- AB\frac{A}{B}BA型,适用于上下同阶
- A-B型适用于幂次最低,即将A和B分别展开到它们系数不相等的xxx的最低次幂