1.11Java-数据结构

目录

1.11.1前言

1.11.2什么是数据结构

1.11.3数组(Array)

1.11.4链表(Linked List)

1.11.4.1单链表

单链表结点数据结构

1.11.4.2双链表

1.11.5栈(Stack)

1.11.6队列(Queue)

1.11.7树(Tree)

1.11.8堆(Heap)

1.11.9散列表(Hash)

1.11.9.1什么是Hash()函数

1.11.9.2Hash()

1.11.9.2.1Hash()如何建立映射的呢?

1.11.9.2.2Hash冲突 

1.11.9.2.3冲突避免

1.11.9.2.4解决冲突方法

1.11.9.2.5常用的Hash函数


1.11.1前言

由于数据结构是一门很重要的学科,而且我们这里只对学习一些java初级阶段所涉及到的简单理论进行学习,更为系统的数据结构可以在博主的数据结构专刊进一步学习。

1.11.2什么是数据结构

 现实世界中,客观事物都是相互联系的,所以数据之间也必然存在着联系。数据结构(Data Structure)就是指数据元素及其相互之间的关系。
数据元素之间的相互联系称为数据的逻辑结构。根据数据元素之间关系的不同特性,数据结构可以分为集合、线性结构、树型结构、图结构4类基本结构。

(1)集合:数据元素间的关系同属一个集合,除此之外,别无其它关系。

(2)线性结构:结构中的元素间存在一对一的关系。

(3)树型结构:结构中的元素间存在一对多的关系。

(4)图(网状)结构:结构中的元素间存在多对多的关系

常用的数据结构有:数组(Array)、链表(Linked List)、栈(Stack)、队列(Queue)、堆(Heap)、树(Tree)、图(Graph)、散列表(Hash)等。

1.11.3数组(Array)

数组(Array):数组是有序元素的序列,在内存中的分配是连续的,数组会为存储的元素都分配一个下标(索引),此下标是一个自增连续的,访问数组中的元素通过下标进行访问;数组下标从0开始访问;

优点:查询快 

数据长度固定,且下标按顺序自增,知道数据的起始位置,顺着就能找到所有元素。

缺点:增删慢

由于每个元素的位置是固定,且是按顺序的,如果中间位置一个元素被删,或者增加一个元素,那么此位置后的所有元素都要移动。

1.11.4链表(Linked List)

1.11.4.1单链表

单链表结点数据结构

 单链表

单链表中,每个结点的数据域存储线性表的数据元素,每个结点的指针域存储其后继元素所在结点的地址,可以通过每个结点的指针域访问到其后继结点。

优点:增删元素快

每个结点都有指向下一个结点的指针索引,增删元素只需要修改指针即可

缺点:查找慢

查询元素,需要从头遍历结点,直到找到想要查询的元素

1.11.4.2双链表

单向链表的每一个结点只有一个指向其后继结点的指针域,此时对每一个结点可以方便地查找到其后继结点,但要操作它的前驱结点,则必须从头结点开始依次搜索一遍。若某一个线性表的操作常常涉及到某一结点的前驱结点,则可以利用双向链表。
双向链表(Double Linked List)的每一个结点由本身的数据元素信息、指向前驱结点的指针域和指向后继结点的指针域三部分组成。双向链表也可以带头结点,也可以采用循环链接。

1.11.5栈(Stack)

栈(Stack)又称堆栈,是一种特殊的线性表,可定义为插入、删除和访问只能在某一端进行的线性数据结构。

堆栈允许插入、删除和访问的一端称为栈顶(Top),另一端称为栈底(Bottom)。栈顶的第一个元素被称为栈顶元素。不含数据元素的空表称为空栈。
向一个栈插入新元素又称为进栈或入栈,它是把该元素放到栈顶元素的上面,使之成为新的栈顶元素;从一个栈删除元素又称为出栈或退栈,它是把栈顶元素删除掉,使其下面的相邻元素成为新的栈顶元素。
堆栈的性质决定它的数据是按“先进后出”的顺序被访问,即最先存储的元素最后被访问、删除,最后存储的元素最先被访问、删除,所以栈也称为“LIFO”(Last_In,First_Out)。

1.11.6队列(Queue)

队列(Queue)简称队,也是一种特殊的线性表,可定义为只允许在表的一端进行插入,而在表的另一端进行删除的线性结构。队列允许插入的一端称为队尾(Rear),允许删除的一端称为队首(Front)。

向队列中插入新元素称为进队或入队,新元素进队后就成为新的队尾元素;从队列中删除元素称为离队或出队,元素离队后,其后继元素就成为队首元素。

由于队列的插入和删除分别在不同的两端进行,因而先插入者自然先从另一端删除,所以队列具有“先进先出”的特点,简称为FIFO(First-In,First-Out)。

1.11.7树(Tree)

(Tree) 是n (n≥0) 个结点的有限集合T,不含有任何结点(元素)的树称为空树,否则它满足如下两个条件:有且仅有一个称为(Root)的结点;其余所有结点被分成m (m≥0)个互不相交的集合T1,T2,T3,…,Tm,其中每个集合又构成一棵树,称其为根结点的子树(SubTree)。树的根结点Root是每棵子树根结点的前驱,每棵子树的根结点是根结点Root的后继。
树的分类有非常多种,平衡二叉树(AVL)、红黑树RBL(R-B Tree)、B树(B-Tree)、B+树(B+Tree)等。

1.11.8堆(Heap)

堆(Heap):堆可以看做是一颗用数组实现的二叉树,所以它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。

1.11.9散列表(Hash)

1.11.9.1什么是Hash()函数

由于顺序结构和平衡二叉树,元素关键码与其存储位置之间没有对应的关系,因此在搜索元素时,需要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( logN)。

因此,我们定义一个理想的环境,不需要比较,直接可以从表中取出元素。这时候就需要映射

我们之前提到过映射,它是一种对应关系,如身份证号与个人,一一对应。

我们可以通过函数使元素的存储位置与关键码建立映射关系,查找只需要通过函数就可以。这个函数就是hsah()。

1.11.9.2Hash()

1.11.9.2.1Hash()如何建立映射的呢?

首先先来了解HashCode:

HashCode就是通过Hash函数得来的,通俗的说,就是通过某一种算法得到的,HashCode就是在Hash表中有对应的位置。

插入元素 :根据待插入元素的关键码,用hash()计算出该元素的存储位置
搜索元素:根据待搜索元素的关键码,用hash()计算出该元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)。

注:

用Hash函数计算出的存储位置,不是物理地址!!,而是在该表中的位置(也就是HashCode)。

因为Hash函数计算出的是HashCode,而这个HashCode代表的是存入该表的位置。

hashcode代表对象的地址说的是对象在hash表中的位置,物理地址说的对象存放在内存中的地址

例如:数据集合{2,4,8,6,7,5};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

 同时,我们也能发现一个严重的问题,如果储存位置重复了怎么办?这就是我们接下来要讨论的hash冲突。

1.11.9.2.2Hash冲突 

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

1.11.9.2.3冲突避免

Hash函数设计原则

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

1.11.9.2.4解决冲突方法

1.开放定址法

简单来说就是一旦发生了冲突,通过某种探测技术,去寻找下一个空的散列地址,若能遇到一个开放的地址(即该地址单元为空)为止。之后如果要添加元素就在该地址添加。

查找探测到开放的地址则表明表 中无待查的关键字,即查找失败。

所谓的探测技术

开放定址法为产生冲突的地址H(key)求得一个地址序列:

H0, H1, H2, …, Hs

其中:

H0 = H(key)
Hi = (H(key) + di) % m

其中m为表的长度,i = 1, 2, 3, …, n,对增量di有三种取法:

1.线性探测再散列
di = 1, 2, 3, …, m - 1

2.二次探测再散列
di = 12, -12, 22, -22, 32, -32, …, k2, -k2 (k <= m / 2)

3.伪随机探测再散列
di = 伪随机数序列 (具体实现时,应建立一个伪随机数发生器,(如i = (i + p) % m),并给定一个随机数做起点。)
 

2.链地址法(拉链法
这种方法的基本思想是将所有哈希地址为 i 的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第 i 个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
Java 中 HashMap 解决 Hash 冲突就是利用了这个方法。

示例:

关键字序列为{19,14,23,01,68,20,84,27,55,11,10,79},散列函数H(k)=K %13,用链地址法处理冲突,建立表如下:

 取余后相同的“串”在一起

3.再哈希法
这种方法是同时构造多个不同的哈希函数:

Hi = RHi(key)          (i = 1,2,…,k)

当哈希地址Hi = RHi(key) 发生冲突时,再计算Hi = RHi(key) ……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。

4.建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。
 

1.11.9.2.5常用的Hash函数

散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位。常用Hash函数有:

1.直接寻址法

取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a * key + b,其中a和b为常数(这种散列函数叫做自身函数)

2.数字分析法 

分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几夹就会很大、俱是我们发现焦月具的后几位表示月份犯昊体月期的数字差别很大.如果思后面的数字来构成散列地址.则决突的几夹会明显.隆低。因此数字分近法就是找出数字的规律.尽可能利用这些数据来构造冲突较低的散烈地址。
 

3.平方取中法

取关键字平方后的中间几位作为散列地址。

4.折叠法

将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址

5.随机数法

选择一随机函数,取关键字作为随机函数的种子生成随机值作为散列地址,通常用于关键字长度不同的场合。

6.除留余数法

取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p<=m。
键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生碰撞。
 

上一篇:1.10Java-异常
下一篇:1.11Java-集合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老李头喽

高级内容,进一步深入JA领域

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值