二部图
- 相邻顶点分别在两部中
- 无向图是二部图当且仅当G中没有长度为奇数的回路
- 匹配:M中任意两条边均不相邻
– 极大匹配:M中再加1条边就不匹配了
– 最大匹配:边数最多匹配
– 饱和点:被匹配的点
– 完美匹配:G中所有点都被匹配了 - 二部:顶点分为V1部、V2部 (V1 <= V2)
- 完备匹配:V1中的点都被匹配了
– Hall定理:
– 对于V1中任意k个顶点至少邻接V2中k个顶点(充要)
– t条件:
– V1最小度 >= V2最大度(满足了就完备)
欧拉图
- 有欧拉回路
- 半欧拉图:有欧拉通路,没有欧拉回路
- 经过图中每条边仅一次,行遍图中每个点(有回路就是欧拉回路,有通路就是欧拉通路)
– 边 - 无向图G有欧拉回路,当且仅当G是连通图且无奇度顶点
– 有欧拉通路,无回路,当且仅当G是连通图且恰好有两个奇度顶点,此时这两个奇度顶点是欧拉通路的端点 - 有向图D有欧拉回路,当且仅当D是连通的且每个顶点的入度等于出度
– 有欧拉通路,无欧拉回路,当且仅当D是连通的且只有两个特殊的顶点的入度不等于出度,其中,一个顶点的入度比出度大1,(此为通路终点),一个顶点的入度比出度小1,(此为通路始点)
哈密(尔)顿图
- 有哈密尔顿回路
- 半哈密尔顿图:有哈密尔顿通路,无哈密尔顿回路
- 经过图中每个顶点一次且仅一次(哈密尔顿回路 / 哈密尔顿通路)
– 点 - 没有充要条件
- 必要条件:(是必满足,满足不一定是)
– p(G - V1) <= |V1| 去掉V1后的连通分支数小于V1中顶点数 - 充分条件:(满足必是,是不一定满足)
– 任何一对不相邻的顶点的度数之和都大于等于n - 1 - r >= 2 时,K(r, r)是哈密尔顿图 (Kr,r 完全二部图)
– K(r, r + 1)是半哈密尔顿图 - 基图中包含Kn,有哈密尔顿通路
- 竞赛图:任意两个顶点之间恰好有一条有向边
- 格雷码:把所有n位0-1字符串排成一个序列,相邻的两个以及最后一个和第一个之间只有一位不同
平面图
- 有平面嵌入
- 平面嵌入:能画成无交叉的图
- 平面嵌入的边将整个平面划分成若干个区域,称为面
- 其中面积无限的面称为无限面或外部面,即R0
- 有限的就是有限面或内部面
- 边界:包围面的回路
- 所有面的次数之和等于边数的2倍
- 极大平面图:不能再加边了,再加就交叉了
- 极小非平面子图:任意删除一条边,得平面图
- 欧拉公式:n - m + r = 2
- n:顶点,m:边,r:面
– 不连通的话,外部无限面是同一个