总览
1.实际电源的两种模型和它们的等效变换
2.两种电源的等效情况
3.戴维南模型 && 诺顿模型
一、实际电源的两种模型和它们的等效变换
1.实际电压源
实际电压源不允许短路。因为它的内阻太小,如果短路,电流很大,可能会烧毁电源。
下图中,U 是给外部电路的电压,Us 是电源的总电压。
Rs * i 则是电源自己由于内阻,分给自己的 电压。
2.实际电流源
探究实际电流源中内阻的方向:
(注意,下面这个图是不合理的。正常来说,考虑内阻之后,外部电路的电流应该减少,但是,实际却增加了)
(这是因为,我们给 Rs 的电流方向错了,流过 Rs 的电流方向应该向下)
可以看到,在伏安特性上,实际电流源 和 实际电压源呈现出对偶的关系,一个使用电阻,另一个则使用电导。
另外,实际电流源也不允许开路,因为它的内阻太大,所以分压会很大,可能会因此烧毁电源。
二、一个实际电压源和实际电流源何时完全等效
1.等效条件
对于外界电路完全相同的伏安特性。
2.如何转换
使用三角形转星型接法,或者联立它们的方程:
(设 u1 和 u2 都是 u、i1 和 i2 都是 i。这是因为它们如果等效,对外界的 u 和 i 应该是相同的)
到右下角那里是重要的公式,is = us / R1,通过这个关系,就能够推导出 G2 = 1/R1,又因为 G2 = 1/R2,所以等效的条件应该是:
R1 == R2
简略的公式变换规则:
注意,上面的变换只是让它们只是对外界电路等效,对于内部的电路是不等效的:
3.例题
例题1:
思路是这样:
我们能够将左侧的 5A 电流源 和 与它并联的 3Ω 电阻看做一个整体,也就是一个实际电流源 1。
同理,下面的 2A 电流源 和 与它并联的 4Ω 电阻看做一个整体,也就是一个实际电流源 2。
然后,根据我们之前说的 实际电压源 和 实际电流源的 互相转换公式,我们可以把它们换成两个 理想电压源!
分别为 理想电压源 1 和 理想电压源 2。它们的电压分别是(在等效条件下,电阻转换前和转换后应相等):
U1 = I1 * R1 = 5 * 3 == 15V
U2 = I2 * R2 = 2 * 4 == 8V
然后,在理想电流源转换为理想电压源之后,我们知道,电源的内阻应该从并联转为串联。
所以说,3Ω 和 4Ω 的内阻并没有改变,它们在等效替换后从并联变成了串联,总计为 7Ω。
所以等效转换后如图所示:
例题2:
思路是这样:
我们先将中间的 10V 电压源去掉(因为无论什么东西和电流源串联都可以被忽略不计)
然后,再将左侧的 10V 电压源 + 5Ω 电阻等效转化为一个 2A 电流源(I = U/R => I = 10/5 == 2)加上一个并联的 5Ω 电阻。
但是这个并联的 5Ω 电阻并没有在图中给出,图中直接化简到最后一步了。
2个 5Ω 的电阻并联,可以转化为一个 2.5Ω 的电阻。
所以最后化简后如图所示:
例题3:
思路是这样:
左侧的 6V 电压源 和 2A 电流源可以看做是并联的。因为:电压源和什么东西并联,那个东西都可以被忽略掉
所以,2A 的电流源可以被省略。
同样,我们也可以根据 电流源和什么东西串联,那个东西都可以被忽略掉,
得到,因为 6A 的电流源方向是向上的,所以,2A 的电流源可以被忽略。
此时,我们继续化简,能够将 10Ω 和 6A 的实际电流源 化简为 60V(U=IR=6 * 10==60)的电压源+1个串联的10Ω电阻。
然后,再将 60V 和 6V 串联,总的 U == 60 + 6 == 66V
加上一个 10Ω 的电阻。如下图所示:
三、戴维南模型 && 诺顿模型
1.什么是戴维南定理?
所有的电压源电流源电阻混合的电路到最后,都能够被化简为 1 个 电压源 和 1 个 电阻 => 串联的电路。
2.诺顿模型
同样的,和戴维南模型是相同的思路和原理。
只不过,诺顿模型的定义是:所有的电压源电流源电阻混合的电路到最后,都能够被化简为:
1个电流源 和 1个电阻 并联的电路。