文章目录
在实际测量和检测中,通常会同时存在多种类型的误差。因此,误差分析和处理是确保测量结果准确性和可靠性的关键环节。
误差类型
1.系统误差(Systematic Error)
定义:系统误差是指由于测量系统的固有缺陷或外部环境影响所引起的,且在相同条件下重复测量时误差值保持一致。
特征:具有确定性和可预测性,可以通过校正和补偿来减小或消除。
例子:测量仪器的校准误差、环境温度变化对仪器的影响、偏置误差等。
2.随机误差(Random Error)
定义:随机误差是指由于各种不确定因素的影响,在相同条件下重复测量时误差值呈现随机变化。
特征:不可预测和不可避免,但可以通过多次测量取平均值来减小其影响。
例子:测量过程中的微小扰动、操作人员的读数误差、外界噪声等。
3.粗大误差(Gross Error)
定义:粗大误差是指由于疏忽、误操作或异常情况引起的显著偏离实际值的误差。
特征:通常是偶然发生的,具有较大的误差值,应通过数据分析和异常值剔除来处理。
例子:记录错误、设备故障、操作失误等。
4.绝对误差(Absolute Error)
定义:绝对误差是测量值与真实值之间的差值。
特征:用具体的数值表示,反映了测量结果与真实值的偏离程度。
公式:绝对误差 = 测量值 - 真实值
5.相对误差(Relative Error)
定义:相对误差是绝对误差与真实值的比值,通常以百分数表示。
特征:反映了误差在真实值中的比例,更适合用于比较不同量级的测量误差。
公式:相对误差 = (绝对误差 / 真实值) × 100%
测量误差(Measurement Error)
定义:测量误差是测量值与实际值之间的差异。
特征:包括所有可能的误差源,例如仪器误差、环境影响、操作误差等。
处理方法:通过误差分析和校正手段尽可能减小测量误差的影响。
评价指标
准确度和精度
准度:准确度,指测量值(或预测值)和实际值有多相近。
精度:精密度或精确度,指多个测量值(或预测值)互相之间有多相近。
MAE
Mean Absolute Error,平均绝对误差
M
A
E
=
1
n
∑
i
=
1
n
∣
x
i
−
u
∣
MAE=\frac{1}{n}\sum_{i=1}^n|x_i-u|
MAE=n1i=1∑n∣xi−u∣
MSE
Mean Squared Error,均方误差
1
n
∑
i
=
1
n
(
x
i
−
u
)
2
\frac{1}{n}\sum_{i=1}^n(x_i-u)^2
n1i=1∑n(xi−u)2
MSE 对异常值或噪声特别敏感。
RMSE
Root Mean Square Error,均方根误差
R
M
S
E
=
1
n
∑
i
=
1
n
(
x
i
−
u
)
2
RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^n(x_i-u)^2}
RMSE=n1i=1∑n(xi−u)2
衡量的是预测值与实际观测值之间的差异。RMSE 越小,表示模型预测的精确度越高。RMSE 是误差平方的平均值的平方根,对异常值(大误差)特别敏感。
AA
Average Accuracy,平均准确率
A
A
=
1
n
∑
i
=
1
n
u
−
∣
x
i
−
u
∣
u
AA=\frac{1}{n}\sum_{i=1}^n\frac{u-|x_i-u|}{u}
AA=n1i=1∑nuu−∣xi−u∣