系统误差
在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变的误差,或在条件改变时,按一定规律变化的误差
大纲
- 实验对比法——不变系差
- 残余误差观察法——有规律变化的系差
- 残余误差检验法 { 马利科夫准则——线性系差 阿卑—赫梅特准则——周期性系差 \left\{ \begin{array}{lr} 马利科夫准则——线性系差& \\ 阿卑—赫梅特准则——周期性系差& \end{array} \right. {马利科夫准则——线性系差阿卑—赫梅特准则——周期性系差
- 不同公式计算标准差比较法
- 组件系差 { 计算数据比较法 秩和检验法 t 检验法(正态分布的测量数据) \left\{ \begin{array}{lr} 计算数据比较法& \\ 秩和检验法\\ t检验法(正态分布的测量数据)& \end{array} \right. ⎩ ⎨ ⎧计算数据比较法秩和检验法t检验法(正态分布的测量数据)
1、系统误差的产生原因
系统误差是由固定不变的或按确定规律变化的因素造成的
- 测量装置方面的因素
- 环境方面的因素
- 测量方法的因素
- 测量人员方面的因素
2、系统误差的特征
- 不变的系统误差
- 线性变化的系统误差
- 周期性变化的系统误差
- 复杂规律变化的系统误差
3、系统误差的发现
(1)实验对比法
改变产生系统误差的条件进行不同条件的测量,用以发现不变的系统误差
(2)残余误差观察法
根据测量列的各个残差大小和符号的变化规律,直接由误差数据或曲线图形来判断有无系统误差,用以发现有规律变化的系统误差
(3)残余误差校验法
a.用以发现线性系统误差
马利科夫准则:将测量列前k个残差相加,后(n-k)个残差相加(n为偶数,取k=n/2;n为奇数,取k=(n+1)/2),两者相减: △ = ∑ i = 1 k v i − ∑ j = k + 1 n v j \bigtriangleup=\sum_{i=1}^kv_i-\sum_{j=k+1}^nv_j △=i=1∑kvi−j=k+1∑nvj = ∑ i = 1 k v ′ i − ∑ j = k + 1 n v ′ j + ∑ i = 1 k ( △ l i − △ x ˉ ) − ∑ j = k + 1 n ( △ l j − △ x ˉ ) =\sum_{i=1}^k{v'}_i-\sum_{j=k+1}^n{v'}_j+\sum_{i=1}^k(\bigtriangleup{l_i}-\bigtriangleup{\bar{x}})-\sum_{j=k+1}^n(\bigtriangleup{l_j}-\bigtriangleup{\bar{x}}) =i=1∑kv′i−j=k+1∑nv′j+i=1∑k(△li−△xˉ)−j=k+1∑n(△lj−△xˉ)当测量次数足够数 ∑ i = 1 k v ′ i ≈ ∑ j = k + 1 n v ′ j = 0 \sum_{i=1}^k{v'}_i\approx\sum_{j=k+1}^n{v'}_j=0 i=1∑kv′i≈j=k+1∑nv′j=0得 △ ≈ ∑ i = 1 k ( △ l i − △ x ˉ ) − ∑ j = k + 1 n ( △ l j − △ x ˉ ) \bigtriangleup\approx\sum_{i=1}^k(\bigtriangleup{l_i}-\bigtriangleup{\bar{x}})-\sum_{j=k+1}^n(\bigtriangleup{l_j}-\bigtriangleup{\bar{x}}) △≈i=1∑k(△li−△xˉ)−j=k+1∑n(△lj−△xˉ)若 △ \bigtriangleup △显著不为0,则有理由认为测量列存在线性系统误差
b.用于发现周期性系统误差
阿卑—赫梅特准则:若有一等精度测量列,按测量先后顺序将残余误差排列为 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn,令 μ = ∣ ∑ i = 1 n − 1 v i v i + 1 ∣ \mu=|\sum_{i=1}^{n-1}v_iv_{i+1}| μ=∣i=1∑n−1vivi+1∣若 μ > n − 1 σ 2 \mu>\sqrt{n-1}\sigma^2 μ>n−1σ2,则认为该测量列中含有周期性系统误差
(4)不同公式计算便准查比较法
按贝塞尔公式 σ 1 = ∑ i = 1 n ∣ v i ∣ n − 1 \sigma_1=\sqrt{\frac{\sum_{i=1}^{n}|v_i|}{n-1}} σ1=n−1∑i=1n∣vi∣按别捷尔斯公式 σ 2 = 1.253 ∑ i = 1 n ∣ v i ∣ n ( n − 1 ) \sigma_2=1.253\frac{\sum_{i=1}^{n}|v_i|}{\sqrt{n(n-1)}} σ2=1.253n(n−1)∑i=1n∣vi∣令 σ 2 σ 1 = 1 + μ \frac{\sigma_2}{\sigma_1}=1+\mu σ1σ2=1+μ若 ∣ μ ∣ ≥ 2 n − 2 |\mu|\ge\frac{2}{\sqrt{n-2}} ∣μ∣≥n−22,则怀疑测量列中存在系统误差
(5)计算数据比较法
若对同一量独立测得m组结果,并知他们得算数平均值和标准差: x ˉ 1 , σ 1 ; x ˉ 1 2 , σ 2 ; . . . ; x ˉ m , σ m \bar{x}_1,\sigma_1;\bar{x}_12,\sigma_2;...;\bar{x}_m,\sigma_m xˉ1,σ1;xˉ12,σ2;...;xˉm,σm任意两组结果之差为 △ = x ˉ i − x ˉ j \bigtriangleup=\bar{x}_i-\bar{x}_j △=xˉi−xˉj其标准差为 σ = σ i 2 + σ j 2 \sigma=\sqrt{\sigma_i^2+\sigma_j^2} σ=σi2+σj2则任意两组结果 x ˉ i \bar{x}_i xˉi与 x ˉ j \bar{x}_j xˉj间不存在系统误差的标志为 ∣ △ ∣ < 2 σ |\bigtriangleup|<2\sigma ∣△∣<2σ
(6)秩和检验法
若独立测得两组的数据为 x i , i = 1 , 2 , . . . , n x x_i,i=1,2,...,n_x xi,i=1,2,...,nx y i , i = 1 , 2 , . . . , n y y_i,i=1,2,...,n_y yi,i=1,2,...,ny则将他们混合后,按大小顺序重新排列,取测量次数较少的那一组,数出他的测得值在排序后的次数(即秩),再将所有测得值得次序相加得秩和T
通过测量次数
n
x
,
n
y
n_x,n_y
nx,ny查表,得
T
−
T_-
T−和
T
+
T_+
T+(显著度为0.05),若
T
−
<
T
<
T
+
T_-<T<T_+
T−<T<T+则无根据怀疑两组间存在系统误差(注:若两组数据中有相同得数据,则该数据得秩按所排列得两个次序得平均值计算)。部分表如下:
例:
x | 14.7 | 14.8 | 15.2 | 15.6 |
---|---|---|---|---|
y | 14.6 | 15.0 | 15.1 |
排序
T | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
x | 14.7 | 14.8 | 15.2 | 15.6 | |||
– | – | – | – | – | – | – | – |
y | 14.6 | 15.0 | 15.1 |
则 n 1 = 3 , n 2 = 4 n_1=3,n_2=4 n1=3,n2=4,则 T = 1 + 4 + 5 = 10 T=1+4+5=10 T=1+4+5=10(y的秩和),通过查表可得 T − = 7 , T + = 17 T_-=7,T_+=17 T−=7,T+=17,所以 T = 7 < T = 10 < T + = 17 T_=7<T=10<T_+=17 T=7<T=10<T+=17故无根据怀疑两组间存在系统误差
(7)t检验法
若两组测得值服从正态分布,数据为 x i , i = 1 , 2 , . . . , n x x_i,i=1,2,...,n_x xi,i=1,2,...,nx y i , i = 1 , 2 , . . . , n y y_i,i=1,2,...,n_y yi,i=1,2,...,ny令变量 t = ( x ˉ − y ˉ ) n x n y ( n x + n y − 2 ) ( n x + n y ) ( n x σ x 2 + n y σ y 2 ) t=(\bar{x}-\bar{y})\sqrt{\frac{n_xn_y(n_x+n_y-2)}{(n_x+n_y)(n_x\sigma_x^2+n_y\sigma_y^2)}} t=(xˉ−yˉ)(nx+ny)(nxσx2+nyσy2)nxny(nx+ny−2)此变量服从自由度为 n x + n y − 2 n_x+n_y-2 nx+ny−2的t分布变量,其中 x ˉ = ∑ x i n x \bar{x}=\frac{\sum{x_i}}{n_x} xˉ=nx∑xi y ˉ = ∑ y i n y \bar{y}=\frac{\sum{y_i}}{n_y} yˉ=ny∑yi σ x 2 = ∑ ( x i − x ˉ ) 2 n x \sigma_x^2=\frac{\sum(x_i-\bar{x})^2}{n_x} σx2=nx∑(xi−xˉ)2 σ y 2 = ∑ ( y i − y ˉ ) 2 n y \sigma_y^2=\frac{\sum(y_i-\bar{y})^2}{n_y} σy2=ny∑(yi−yˉ)2取显著度 α \alpha α,由t分布表查 P ( ∣ t ∣ > t α ) = α P(|t|>t_\alpha)=\alpha P(∣t∣>tα)=α中的 α \alpha α,若实测数列中 ∣ t ∣ < t α |t|<t_\alpha ∣t∣<tα,则无根据怀疑两组间存在系统误差
4、系统误差的减小和消除
- 从产生误差根源上消除系统误差
- 用修正方法消除系统误差
- 不变系统误差消除法——代替法、抵消法、交换法
- 线性系统误差消除法——对称法
- 中期行系统误差消除法——半周期法