《误差理论》——系统误差

系统误差

在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变的误差,或在条件改变时,按一定规律变化的误差

大纲

  • 实验对比法——不变系差
  • 残余误差观察法——有规律变化的系差
  • 残余误差检验法 { 马利科夫准则——线性系差 阿卑—赫梅特准则——周期性系差 \left\{ \begin{array}{lr} 马利科夫准则——线性系差& \\ 阿卑—赫梅特准则——周期性系差& \end{array} \right. {马利科夫准则——线性系差阿卑赫梅特准则——周期性系差
  • 不同公式计算标准差比较法
  • 组件系差 { 计算数据比较法 秩和检验法 t 检验法(正态分布的测量数据) \left\{ \begin{array}{lr} 计算数据比较法& \\ 秩和检验法\\ t检验法(正态分布的测量数据)& \end{array} \right. 计算数据比较法秩和检验法t检验法(正态分布的测量数据)

1、系统误差的产生原因

系统误差是由固定不变的或按确定规律变化的因素造成的

  • 测量装置方面的因素
  • 环境方面的因素
  • 测量方法的因素
  • 测量人员方面的因素

2、系统误差的特征

  • 不变的系统误差
  • 线性变化的系统误差
  • 周期性变化的系统误差
  • 复杂规律变化的系统误差

3、系统误差的发现

(1)实验对比法

改变产生系统误差的条件进行不同条件的测量,用以发现不变的系统误差

(2)残余误差观察法

根据测量列的各个残差大小和符号的变化规律,直接由误差数据或曲线图形来判断有无系统误差,用以发现有规律变化的系统误差

(3)残余误差校验法

a.用以发现线性系统误差

马利科夫准则:将测量列前k个残差相加,后(n-k)个残差相加(n为偶数,取k=n/2;n为奇数,取k=(n+1)/2),两者相减: △ = ∑ i = 1 k v i − ∑ j = k + 1 n v j \bigtriangleup=\sum_{i=1}^kv_i-\sum_{j=k+1}^nv_j =i=1kvij=k+1nvj = ∑ i = 1 k v ′ i − ∑ j = k + 1 n v ′ j + ∑ i = 1 k ( △ l i − △ x ˉ ) − ∑ j = k + 1 n ( △ l j − △ x ˉ ) =\sum_{i=1}^k{v'}_i-\sum_{j=k+1}^n{v'}_j+\sum_{i=1}^k(\bigtriangleup{l_i}-\bigtriangleup{\bar{x}})-\sum_{j=k+1}^n(\bigtriangleup{l_j}-\bigtriangleup{\bar{x}}) =i=1kvij=k+1nvj+i=1k(lixˉ)j=k+1n(ljxˉ)当测量次数足够数 ∑ i = 1 k v ′ i ≈ ∑ j = k + 1 n v ′ j = 0 \sum_{i=1}^k{v'}_i\approx\sum_{j=k+1}^n{v'}_j=0 i=1kvij=k+1nvj=0 △ ≈ ∑ i = 1 k ( △ l i − △ x ˉ ) − ∑ j = k + 1 n ( △ l j − △ x ˉ ) \bigtriangleup\approx\sum_{i=1}^k(\bigtriangleup{l_i}-\bigtriangleup{\bar{x}})-\sum_{j=k+1}^n(\bigtriangleup{l_j}-\bigtriangleup{\bar{x}}) i=1k(lixˉ)j=k+1n(ljxˉ) △ \bigtriangleup 显著不为0,则有理由认为测量列存在线性系统误差

b.用于发现周期性系统误差

阿卑—赫梅特准则:若有一等精度测量列,按测量先后顺序将残余误差排列为 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn,令 μ = ∣ ∑ i = 1 n − 1 v i v i + 1 ∣ \mu=|\sum_{i=1}^{n-1}v_iv_{i+1}| μ=i=1n1vivi+1 μ > n − 1 σ 2 \mu>\sqrt{n-1}\sigma^2 μ>n1 σ2,则认为该测量列中含有周期性系统误差

(4)不同公式计算便准查比较法

贝塞尔公式 σ 1 = ∑ i = 1 n ∣ v i ∣ n − 1 \sigma_1=\sqrt{\frac{\sum_{i=1}^{n}|v_i|}{n-1}} σ1=n1i=1nvi 别捷尔斯公式 σ 2 = 1.253 ∑ i = 1 n ∣ v i ∣ n ( n − 1 ) \sigma_2=1.253\frac{\sum_{i=1}^{n}|v_i|}{\sqrt{n(n-1)}} σ2=1.253n(n1) i=1nvi σ 2 σ 1 = 1 + μ \frac{\sigma_2}{\sigma_1}=1+\mu σ1σ2=1+μ ∣ μ ∣ ≥ 2 n − 2 |\mu|\ge\frac{2}{\sqrt{n-2}} μn2 2,则怀疑测量列中存在系统误差

(5)计算数据比较法

若对同一量独立测得m组结果,并知他们得算数平均值和标准差: x ˉ 1 , σ 1 ; x ˉ 1 2 , σ 2 ; . . . ; x ˉ m , σ m \bar{x}_1,\sigma_1;\bar{x}_12,\sigma_2;...;\bar{x}_m,\sigma_m xˉ1,σ1;xˉ12,σ2;...;xˉm,σm任意两组结果之差为 △ = x ˉ i − x ˉ j \bigtriangleup=\bar{x}_i-\bar{x}_j =xˉixˉj其标准差为 σ = σ i 2 + σ j 2 \sigma=\sqrt{\sigma_i^2+\sigma_j^2} σ=σi2+σj2 则任意两组结果 x ˉ i \bar{x}_i xˉi x ˉ j \bar{x}_j xˉj不存在系统误差的标志为 ∣ △ ∣ < 2 σ |\bigtriangleup|<2\sigma <2σ

(6)秩和检验法

独立测得两组的数据为 x i , i = 1 , 2 , . . . , n x x_i,i=1,2,...,n_x xi,i=1,2,...,nx y i , i = 1 , 2 , . . . , n y y_i,i=1,2,...,n_y yi,i=1,2,...,ny则将他们混合后,按大小顺序重新排列取测量次数较少的那一组数出他的测得值在排序后的次数(即秩),再将所有测得值得次序相加得秩和T

通过测量次数 n x , n y n_x,n_y nx,ny查表,得 T − T_- T T + T_+ T+(显著度为0.05),若 T − < T < T + T_-<T<T_+ T<T<T+无根据怀疑两组间存在系统误差(注:若两组数据中有相同得数据,则该数据得秩按所排列得两个次序得平均值计算)。部分表如下:在这里插入图片描述

例:

x14.714.815.215.6
y14.615.015.1

排序

T1234567
x14.714.815.215.6
y14.615.015.1

n 1 = 3 , n 2 = 4 n_1=3,n_2=4 n1=3,n2=4,则 T = 1 + 4 + 5 = 10 T=1+4+5=10 T=1+4+5=10(y的秩和),通过查表可得 T − = 7 , T + = 17 T_-=7,T_+=17 T=7,T+=17,所以 T = 7 < T = 10 < T + = 17 T_=7<T=10<T_+=17 T=7<T=10<T+=17无根据怀疑两组间存在系统误差

(7)t检验法

若两组测得值服从正态分布,数据为 x i , i = 1 , 2 , . . . , n x x_i,i=1,2,...,n_x xi,i=1,2,...,nx y i , i = 1 , 2 , . . . , n y y_i,i=1,2,...,n_y yi,i=1,2,...,ny令变量 t = ( x ˉ − y ˉ ) n x n y ( n x + n y − 2 ) ( n x + n y ) ( n x σ x 2 + n y σ y 2 ) t=(\bar{x}-\bar{y})\sqrt{\frac{n_xn_y(n_x+n_y-2)}{(n_x+n_y)(n_x\sigma_x^2+n_y\sigma_y^2)}} t=(xˉyˉ)(nx+ny)(nxσx2+nyσy2)nxny(nx+ny2) 此变量服从自由度为 n x + n y − 2 n_x+n_y-2 nx+ny2的t分布变量,其中 x ˉ = ∑ x i n x \bar{x}=\frac{\sum{x_i}}{n_x} xˉ=nxxi y ˉ = ∑ y i n y \bar{y}=\frac{\sum{y_i}}{n_y} yˉ=nyyi σ x 2 = ∑ ( x i − x ˉ ) 2 n x \sigma_x^2=\frac{\sum(x_i-\bar{x})^2}{n_x} σx2=nx(xixˉ)2 σ y 2 = ∑ ( y i − y ˉ ) 2 n y \sigma_y^2=\frac{\sum(y_i-\bar{y})^2}{n_y} σy2=ny(yiyˉ)2取显著度 α \alpha α,由t分布表 P ( ∣ t ∣ > t α ) = α P(|t|>t_\alpha)=\alpha P(t>tα)=α中的 α \alpha α,若实测数列中 ∣ t ∣ < t α |t|<t_\alpha t<tα,则无根据怀疑两组间存在系统误差

4、系统误差的减小和消除

  • 从产生误差根源上消除系统误差
  • 用修正方法消除系统误差
  • 不变系统误差消除法——代替法、抵消法、交换法
  • 线性系统误差消除法——对称法
  • 中期行系统误差消除法——半周期法
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
误差理论与测量平差基础是测量学中的重要概念。测量中难免会产生误差,包括系统误差和随机误差误差理论就是通过对误差的分析和研究,来确定测量结果的可靠性和准确性的一门学科。 测量平差基础是对测量结果进行调整的过程,通过对各个测量值的分析和比较,将误差调整到最小程度,从而得到更为准确的测量结果。平差可以分为精度平差和权衡平差两种方式。其中精度平差是对各个测量点进行平差,追求测量结果的最小误差;权衡平差是在考虑各个测量点的精度和测量结果的一致性之间进行权衡,以得到相对合理的结果。 误差理论和测量平差基础是测量学的基本理论和方法。测量学是一门研究测量误差及其影响因素、测量方法和测量结果处理的科学,广泛应用于工程测量、地理测量、物理测量等领域。通过误差理论和测量平差基础的学习和掌握,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。 此外,在现代科技发展的背景下,误差理论与测量平差基础也得到了很大的推动和应用。在大数据、人工智能等领域中,对测量结果的精确性要求越来越高,因此对误差理论和测量平差基础的研究和应用也变得更加重要。 总之,误差理论和测量平差基础是测量学中的基本概念和方法,通过对测量误差的分析和测量结果的调整,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三天后的承诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值