NYUv2数据集的使用

本文详细解释了NYUv2数据集的三个部分:标记数据集(包含RGB-D图像和密集标签)、原始数据集(原始Kinect图像和加速度计数据)以及提供的Toolbox函数,如深度图填充和同步帧操作。讨论了如何使用这些资源进行数据处理和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NYU v2 各部分都包含什么

NYU v2官网
Downloads中有三个部分

· Labeled dataset
原始数据集的子集,由RGB和Depth帧对组成,这些帧已被同步,并为每个图像添加了密集的标签。除了投影深度图之外,还包含了一组预处理深度图,使用Levin等人的着色方案填充了这些深度图的缺失值。与原始数据集不同,标记数据集以Matlab .mat文件的形式提供,其中包含以下变量:
accelData - 每帧的加速度计值的Nx4矩阵。列包含设备的滚转、偏航、俯仰和倾斜角度。
depths - 绘制深度图的HxWxN矩阵,其中H和W分别为高度和宽度,N为图像数目,深度元素的值单位为米。
images - RGB图像的HxWx3xN矩阵,其中H和W分别是高度和宽度,N是图像的数量。
instances - 实例映射的HxWxN矩阵。使用Toolbox中的get_instance_masks.m恢复场景中每个对象实例的掩码。
labels - HxWxN对象标签掩码矩阵,其中H为高度,W为宽度,N为图像个数。标签的范围从1…C,其中C是类的总数。如果像素的标签值为0,则该像素为“未标记”。
names - Cx1单元格数组中每个类的英文名称。
namesTolds - 从英文标签名称映射到类id(使用C键值对)
rawDepths - HxWxN 矩阵包含原始深度图,其中H和W分别表示高度和宽度,N是图像数量。这些深度图在被投影到RGB图像平面之后、缺失深度值被填充之前捕获深度图像。另外,从Kinect设备得来的深度非线性已经被移除,每个深度图像的值都以米为单位。
rawDepthFilenames - 用

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值