插值法定义
构造一个函数,需要这个函数完全过给定点
对于构造函数:
插值方法
拉格朗日插值法(插值多项式)
- 三个点时
- n个点时
拉格朗日插值不足 — 龙格现象
当插值函数的阶数 n n n越大时,在两端的波动极大,会产生明显的震荡
分段插值
- 分段线性插值
每两个点之间分别构成一个线段,只用到了最近的两个点 - 分段二次插值
选最近的n个已知点,构造n-1次函数
例如:选最近的3个点,构造一个二次函数 - 牛顿插值法
例如:
- 有
x
0
.
.
.
x
n
−
1
x_0 ... x_{n-1}
x0...xn−1点
- 有
x
0
.
.
.
x
n
x_0 ... x_{n}
x0...xn点
上两个牛顿插值只有一项不想同,所以牛顿插值法具有继承性
以上三种方法都没有反应被插值函数的导数
- 埃尔米特(Hermite)插值法
不但要求在节点的函数值相等,也要求对应的导数值也相等,甚至更高阶导数也相等
-
分段三次埃尔米特插值
运用了一阶导数相等 -
内置函数:
- 三次样条插值
运用了二阶连续可微 且 每个区间 [ x i , x i + 1 ] [x_i,x_{i+1}] [xi,xi+1]是三次多项式
- 内置函数: