数学建模 --- 插值法

本文深入探讨了插值法的各种类型,包括拉格朗日插值、分段线性和二次插值、牛顿插值以及埃尔米特插值法。特别关注了高阶插值可能导致的龙格现象,并介绍了分段三次埃尔米特和三次样条插值作为解决方案。适用于多维数据插值的方法也被提及。
摘要由CSDN通过智能技术生成

插值法定义

构造一个函数,需要这个函数完全过给定点
对于构造函数:
在这里插入图片描述

插值方法

拉格朗日插值法(插值多项式)
  1. 三个点时在这里插入图片描述
  2. n个点时在这里插入图片描述
拉格朗日插值不足 — 龙格现象

当插值函数的阶数 n n n越大时,在两端的波动极大,会产生明显的震荡

分段插值
  1. 分段线性插值
    每两个点之间分别构成一个线段,只用到了最近的两个点
  2. 分段二次插值
    选最近的n个已知点,构造n-1次函数
    例如:选最近的3个点,构造一个二次函数
  3. 牛顿插值法
    在这里插入图片描述
    例如:
  • x 0 . . . x n − 1 x_0 ... x_{n-1} x0...xn1
    在这里插入图片描述
  • x 0 . . . x n x_0 ... x_{n} x0...xn
    在这里插入图片描述
    上两个牛顿插值只有一项不想同,所以牛顿插值法具有继承性
    以上三种方法都没有反应被插值函数的导数
  1. 埃尔米特(Hermite)插值法
    不但要求在节点的函数值相等,也要求对应的导数值也相等,甚至更高阶导数也相等
  • 分段三次埃尔米特插值
    运用了一阶导数相等

  • 内置函数:
    在这里插入图片描述

  1. 三次样条插值
    运用了二阶连续可微 且 每个区间 [ x i , x i + 1 ] [x_i,x_{i+1}] [xi,xi+1]是三次多项式在这里插入图片描述
  • 内置函数:
    在这里插入图片描述
n维数据插值

在这里插入图片描述


参考资料:数学建模清风视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值