CVbaseline论文精读
文章平均质量分 90
又青。
骑单车到月亮
展开
-
【深度学习CV-baseline】GoogleNet-更深的卷积神经网络
1、学习目标训练技巧中认识googleNet提出的数据增强技巧;测试技巧中一张图片怎样变成144张图片。2、背景、成果及意义相关研究1、NIN(Network in Network网中网):首个采用1*1卷积的卷积神经网络,舍弃全连接层,大大减少网络参数;压缩特征图的厚度,为后续卷积计算提供更少的feature map及通道数量2、Robust Object Recognition with Cortex-Like Mechanisms[15]:多尺度Gabor滤波器提取特征;参考文献[15原创 2022-06-23 10:06:39 · 856 阅读 · 0 评论 -
【深度学习CV-baseline】VGG论文精读
VGG-大规模图像识别的深度卷积神经网络一、研究背景、成果及意义1、学习目标这篇文章是针对卷积神经网络的深度去研究的,并且是针对大规模的图像识别任务中。2、研究背景、成果及意义相关研究1、AlexNet:ILSVRC-2012分类冠军,里程牌的CNN模型AlexNet卷积神经网络设计理念会一直沿用,前面卷积池化进行特征提取,后面FC层分类的设计思想。2、ZFNet:ILSVRC-2013分类冠军,对AlexNet改进仅仅是对AlexNet超参数的改变3、OverFeat:ILSVRC原创 2022-04-26 21:00:18 · 1117 阅读 · 0 评论 -
【深度学习CV-baseline】AlexNet论文精读
AlexNet-ImageNet Classification with Deep Convolutional Neural Networks 基于深度卷积神经网络的图像分类一、研究背景1、学习目标2、研究背景(1)数据集1)Mnist可以称为CV领域的Hello world,也就是我们入门CV领域的第一个接触的数据集,该数据集为人手写的0-9的10个数字,该数据集图片的分辨率为2828;2)Cifar-10与Mnist对标的数据集,是RGB图像,分辨率为3232;但是这些数据集数据量还是非原创 2022-04-13 19:39:04 · 2446 阅读 · 0 评论