电网络-第二章-网络图论基本理论
图是由节点和支路组成的,是节点和支路的一个集合,每条支路的两端都连接到相应的节点上
第1节 网络的图和图论基本术语
(1)图(线图)定义:边和顶点的集合,仅反映网络结构,不反映元件性质和支路之间的耦合关系
(2)图(线图)特点:①去掉节点时,节点上连接的支路要一并去掉;②去掉支路时,支路两端的节点要予以保留。
(3)顶点(节点):①普通节点:线段的端点;②独立节点:孤立的点,不与支路相关联的点
(4)边(支路):联接两个顶点的一条线路
(7)顶点的次数(维数、度):与1个顶点相关联的边的数目称为该顶点的次数、维数;①独立顶点(孤立节点):次数为0;②简单顶点(简单节点):次数为2
(5)有向图\无向图\混合图:①有向图:图中所有边都标有方向;②无向图:图中所有边都没有取向;③只有部分支路标有方向
(6)相关联\相邻接:相关联是不同元素之间的关系,比如顶点与边之间;相邻接是相同元素之间的关系,比如顶点与顶点之间或边与边之间。
(8)子图\补图定义:图G1中每一个节点和每条支路都是图G中的一部分,则G1为G的子图
常见子图示例:回路、树、割集都是常用子图
子图可以只包括1个孤立节点
回路和树都是连通图的1个子图
若把图G分成2个子图G1和子图G2,若2个子图没有相同的边,但他们共同包含了图G全部的边和全部顶点,则称G1、G2互补,G1是G2的补图
(9)通路:若m+1个顶点通过n条边依次连通,且m+1个顶点中除了始端和终端顶点为1次外,其余各顶点均为2次的。
(10)回路:当通路始端和末端顶点重合,即通路闭合,这种闭合的通路称为回路或者环;回路中的顶点均为2次的
回路长度 = 回路所包含的支路数 = 回路所包含的节点数
长度为1的回路称为自回路,即自环
(11)连通图:如果图G中任意两个顶点之间至少有一条通路,则称为图G为连通图;(条件宽松)
1个非连通图,至少含两个相互分离的连通子图
(12)完备图:如果图G中任何一对顶点之间只有一条边,则称图G为完备图;(条件苛刻)
因此满足完备的,必定满足连通,可推出:
①完备图是连通的,但连通图不一定是完备图
②"图G是连通图" 是"图G是完备图"的必要条件(后能推前,前不能推后)
(13)充分、必要、充要条件:
①充分条件:前能推后,后不能推前;
②必要条件:后能推前,前不能推后;
③充要条件:前能推后,后能推前
(14)树和树余
①树的条件:连通的;包含所有节点;不包含任何回路
②树中任意二顶点之间只有一条通路;
③图G中与树互补的子图为树余
④树中所包含的边称为树支,树余中所含的边为连支
(15)割集
割集的条件:①移去这组支路后,图变为两个各自连通的子图;②任意留下这组支路中的一条支路,图仍是连通的
(16)基本割集
在图G中任选1个树,由树T的一条树支与相应的唯一一组连支所构成的割集
基本割集是单树支割集
在n节点,b支路的连通图G中,基本割集数 = 树支数 =(n-1)
(17)基本回路
在图G中任选1个树,由一条连支与相应的唯一一组树支构成的回路
基本回路是单连支回路
在n节点,b支路的连通图G中,基本回路数 = 连支数 =(b-n+1)
(18)注意事项
图G的基本回路不唯一
图G的基本割集不唯一
对应连通图G的树T,其基本回路唯一:一旦选定树支,其基本回路、基本割集唯一确定
对应连通图G的树T,其基本割集唯一
(19)生成子图:包含所有节点的子图为生成子图;树、余树都是生成子图(因为在成为树的条件中有,需包含所有的节点)
例题
第2节 图的矩阵表示及其性质
2.1 关联矩阵
定义:表示图G的节点n(node)和支路b(branch)的关联关系;也叫做节-支关联矩阵
特点:增广关联矩阵Aa:Aa=[ajk]是1个n×b阶的矩阵(n行b列:n为节点数—矩阵行数、b为支路数—矩阵列数;j指代节点,k指代支路)
列写:增广关联矩阵Aa
关联矩阵性质及特点:
增广关联矩阵
(1)增广矩阵Aa中各行线性相关,其中(n-1)行 线性无关,即Aa的秩为(n-1);
(2)增广关联矩阵Aa中每一列有2个非零元素,其中1个为+1,1个为-1,每一列元素之和一定为0
分析:矩阵Aa中每一列表示1条支路,支路b1两端必有2个节点与支路b1相连---->2个非零元素
支路方向一定是流入1个节点,流出1个节点------->1个值为+1,1个值为-1,元素之和为0
(降阶)关联矩阵
(1)在增广关联矩阵Aa基础上,任意划去一行(划去的该行相应节点为参考节点),剩下的(n-1)×b阶矩阵为降阶关联矩阵A,简称关联矩阵A
关联矩阵A各行线性无关
关联矩阵A分块形式 A = [树支节支关联矩阵|连支节支关联矩阵]
例题:列写增广关联矩阵Aa、关联矩阵A(分别以节点④、⑤为参考节点)
2.2 回路矩阵
定义:表示图G的回路和支路的关联关系;也叫做回支关联矩阵
特点:增广回路矩阵Ba:Ba = [bjk]是1个L×b阶的矩阵。(L行b列:L为回路数—矩阵行数;b为支路数—矩阵列数;j指代回路,k指代支路)
列写:增广回路矩阵Ba
回路矩阵性质及特点
增广回路矩阵Ba
(1)增广回路矩阵Ba各行线性相关,Ba的秩为(b-n+1);
基本回路矩阵Bf: 表示基本回路与支路的关联关系
(1)基本回路矩阵Bf的秩与增广回路矩阵Ba的秩一样,为(b-n+1),是(b-n+1)×b阶矩阵;
(2)基本回路矩阵Bf分块形式 Bf= [树支回路矩阵|连支对应的对角阵](可用来验证)
2.3 割集矩阵
定义:表示图G的割集和支路的关联关系;也叫做割支关联矩阵
特点:增广割集矩阵Qa的秩为(n-1)
割集矩阵性质及特点
增广割集矩阵Qa
增广割集矩阵Qa秩为(n-1)
基本割集矩阵Qf:表示基本割集与支路之间的关联关系
(1)基本割集矩阵Qf的秩和增广割集矩阵Qa的秩一样,为(n-1),是(n-1)×b阶矩阵;
(2)基本割集矩阵Qf分块形式 Qf= [树支对应的对角阵|连支-割集矩阵](可用来验证)