自定义标题
一. 实验要求
1. 针对固定点位拍摄多张图片,以中间图片为中心,实现图像的拼接融合;
2. 针对同一场景(需选取视差变化大的场景,也就是有近景目标),更换拍摄位置,分析拼接结果
二. 基于RANSAC的图像拼接
2.1 图像拼接原理
2.1.1 APAP
-
在图像拼接融合的过程中,受客观因素的影响,拼接融合后的图像可能会存在“鬼影现象”以及图像间过度不连续等问题。下图就是图像拼接的一种“鬼影现象”。解决鬼影现象可以采用APAP算法
-
算法流程:
1.提取两张图片的sift特征点
2.对两张图片的特征点进行匹配
3.匹配后,使用RANSAC算法进行特征点对的筛选,排除错误点。筛选后的特征点基本能够一一对应。
4.使用DLT算法,将剩下的特征点对进行透视变换矩阵的估计。
5.因为得到的透视变换矩阵是基于全局特征点对进行的,即一个刚性的单应性矩阵完成配准。为提高配准的精度,Apap将图像切割成无数多个小方块,对每个小方块进行单应性矩阵变换。
2.2.2 最小割问题、最大流问题找拼接缝
当两张图像拼接完成后,可能会出现情况:两张图像之间的过度不连续,也就是存在拼接缝隙,拼接线两侧的灰度变化较为明显。最小割问题和最大流问题可以解决这个问题。
最大流
给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow)。
最小割
割是网络中定点的一个划分,它把网络中的所有顶点划分成两个顶点集合S和T,其中源点s∈S,汇点t∈T。记为CUT(S,T),满足条件的从S到T的最小割(Min cut)。