【Python计算机视觉编程】图像的拼接

本文详细探讨了使用RANSAC算法进行图像拼接的原理和过程,包括APAP算法、最大流最小割问题在找拼接缝的应用以及Multi-Band Blending融合方法。通过实验证明,固定点拍摄的图像拼接准确率较高,而位置改变可能导致近景目标的拼接错误。
摘要由CSDN通过智能技术生成

一. 实验要求

1. 针对固定点位拍摄多张图片,以中间图片为中心,实现图像的拼接融合;
2. 针对同一场景(需选取视差变化大的场景,也就是有近景目标),更换拍摄位置,分析拼接结果

二. 基于RANSAC的图像拼接

2.1 图像拼接原理

2.1.1 APAP
  1. 在图像拼接融合的过程中,受客观因素的影响,拼接融合后的图像可能会存在“鬼影现象”以及图像间过度不连续等问题。下图就是图像拼接的一种“鬼影现象”。解决鬼影现象可以采用APAP算法
    在这里插入图片描述

  2. 算法流程:
    1.提取两张图片的sift特征点
    2.对两张图片的特征点进行匹配
    3.匹配后,使用RANSAC算法进行特征点对的筛选,排除错误点。筛选后的特征点基本能够一一对应。
    4.使用DLT算法,将剩下的特征点对进行透视变换矩阵的估计。
    5.因为得到的透视变换矩阵是基于全局特征点对进行的,即一个刚性的单应性矩阵完成配准。为提高配准的精度,Apap将图像切割成无数多个小方块,对每个小方块进行单应性矩阵变换。
    在这里插入图片描述

2.2.2 最小割问题、最大流问题找拼接缝

当两张图像拼接完成后,可能会出现情况:两张图像之间的过度不连续,也就是存在拼接缝隙,拼接线两侧的灰度变化较为明显。最小割问题和最大流问题可以解决这个问题。

最大流
给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow)。

最小割
割是网络中定点的一个划分,它把网络中的所有顶点划分成两个顶点集合S和T,其中源点s∈S,汇点t∈T。记为CUT(S,T),满足条件的从S到T的最小割(Min cut)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值