数学建模的基本办法和步骤 ##数模学习1

大三上学期的寒假才开始学习数模的渣。

一、基本方法

1.1 机理分析

机理分析是针对事物的客观规律,找到反映内部机理的数量规律,建立的模型常有明确的物理或现实意义。

1.2 测试分析

当事物的规律性或内在机理不明显,或要求建模不需要反映明确的物理和现实意义,只需要进行部分的预测或规律寻求,则可用测试分析来建模。测试分析的过程类似“黑箱”测试,即不知道内在的机理和规律,只是对输入输出进行统计分析。

1.3 什么时候用什么方法建模

  1. 当掌握要求解问题的一定的内在机理知识时,且要求建立的模型是有明确物理或现实意义的时候,进行机理分析建模;
  2. 测试分析的应用范围见测试分析的定义(1.2)
  3. 许多实例需要两种方法结合使用,即用机理分析建立模型的结构,用测试分析求解模型参数

二、数学建模基本步骤

模型准备
模型假设
模型构成
模型求解
模型分析
模型检验
模型应用

2.1 模型准备

了解背景,明确目的,搜集信息,形成一个比较清晰的问题。

2.2 模型假设

抓住本质、主要矛盾,忽略次要的因素,做出合理,必要的简化假设。
应避免太简单或太复杂,做出假设的依据,一是对问题内在规律的认识;二是对数据、现象的分析。想象力,判断力,洞察力及经验在模型假设中起重要作用。

2.3模型构成

一般方法为采用类比法借用已有的模型,根据假设,用数学语言、符号来描述对象的内在规律,包含变量、常量等的数学模型。注:应尽量采用简单的数学工具,因为你的模型总是希望更多的人了解和使用,而不是只供少数专家欣赏。

2.4模型求解

可以采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别十四数学软件和计算机技术。

2.5模型分析

对求解结果进行分析,如结果的误差分析、统计分析等各种数学方法,特别是数学软件和计算机技术。

2.6模型检验

把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,检验模型的合理性和适用性,如果结果与实际不符,问题常常出在模型假设上,应该修改、补充假设,重新建模。
此步对模型是否有用非常关键,要以严肃认真的态度对待,有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意。

2.7模型应用

显而易见

三、数学建模全过程

表述归纳
求解演绎
解释
验证
现实对象的信息
数学模型
模型求解
现实对象的解答

对应的看美赛的建模完整的过程应该包括

1.Introduction(对题目所给的信息进行表述)
2.Basic Assumption(模型的基本假设)
3.Symbols(模型要用的数学符号)
4.Models(模型的主体部分,包括求解和对应问题的解答)
5. Evaluation and Promotion of Model(模型的分析和待改进的地方,优势,劣势)
6.Conclusions(结论)

其中合理假设对后面的求解具有指导性的作用
1、抠题眼,题目黑点点里写了什么,我们就要答什么,要全面、尽量表现的有理有据,和我们建立的模型扯上关系
2、找资料很重要,找到相关性比较强的论文数据
3、列论文提纲
4、要有节奏,四天的比赛
5、开始一篇论文,首先留出来摘要Summary的位置,摘要是最后写的也是最难写的。
6、取题目的方法,简洁大方工科性

参考书目 《数学模型》 姜启源

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页