数学建模之机理分析

本文介绍了数学建模的三种主要方法:机理建模、情景建模和数据建模。机理建模侧重于通过分析事物内在机理建立模型,如人才吸引力评价问题中运用柯布-道格拉斯函数等。情景建模关注真实情景的再现,而数据建模则涉及数据预处理、综合评价和预测分析,例如在出租车资源配置问题中运用动态加权和预测模型。文章强调了在建模过程中理解和处理问题的机理、情景及数据的重要性,并给出了多个实际问题的应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、针对问题的机理建模方法
定义
机理分析:通过对系统内部原因(机理)的分析研究,从而找出其发展变化规律的一种科学研究方法。

1. 机理方法概述

(1)自身存在的发展规律和理由–分析事物的内在因素,研究其内在关系,得到内在规律—机理模型。
(2)如何从事物的内在因素和条件中研究其内在关系与规律??------机理分析建模方法。
(3)利用机理分析方法所建立的模型有:代数方程、函数方程、微分方程、积分方程和一般的动力学模型等。
一般不能直接应用某种现成的方法得到模型,或直接套用现成的模型得到结论。

2. 机理建模的基本方法
类比分析法:根据一些物理定律,经济规律,数学原理等建立不同事物之间的类比关系,建立问题的数学模型。
量纲分析法:通过分析问题相关物理量的量纲,根据量纲一致性原则建立各物理量之间的关系。
几何分析法:针对实际问题,利用平面几何、立体几何、解析几何的原理等建立模型。
逻辑分析法:一句问题的客观条件和实际情况,利用逻辑推理和逻辑运算建立模型
比较分析法:对照各个事物,确定事务间的共同点和差异点,通过文字描述、图表等方式对事物特征进行分析,建立模型。
推理分析法:在掌握一定的已知事实,数据信息或者因素相关性的基础上,通过因果关系或其他相关关系顺次,逐步地推论得出新结论,建立模型。

3. 机理分析建模流程
针对实际问题-----了解问题背景----分析问题-----明确相关因素和参数-----分析其内在关系—用适当数学方法—建立关联模型–选用实际数据–确定未知数据—求解模型—用结果解释实际问题—用实际数据或模拟检验模型—进一步扩展模型。

例:人才吸引力评价(2018深圳杯A题)—中国大学生在线可看此论文
将定性分析转换成定量分析
发展前景
经济收入
社会环境
问题的关键:首先搞清楚:什么是人才吸引力?水平如何?优势与不足?如何提升?
(1)柯布–道格拉斯函数
人才吸引力:发展前景、经济收入、社会环境
发展前景:历史数据、当前数据
经济收入:人均收入、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值