【国科大矩阵论】矩阵分解复习


前言

作者进行矩阵分解章节复习总结的几种计算。
矩阵分解主要有LDU分解、Cholesky分解、QR分解、满秩分解、奇异值分解。
本文不讲理论知识,只是理清计算过程。


提示:以下是本篇文章正文内容,下面例题可供参考


一、LDU分解

三角分解,其中还有上三角和下三角形式。
A = [ 2 − 1 3 1 2 1 2 4 2 ] A= \left[\begin{array}{lll} 2 & -1 & 3 \\ 1 & 2 & 1 \\ 2 & 4 & 2 \end{array}\right] A=212124312的LDU分解

解答:

(1)根据A构造第1列的单位下三角矩阵

L 1 = [ 1 1 2 1 1 0 1 ] {L_1} = \left[\begin{array}{lll} 1 \\ {\boldsymbol{\frac{1}{2}}}& 1 \\ 1 & 0 & 1 \end{array}\right] L1=1211101 L 1 − 1 = [ 1 − 1 2 1 − 1 0 1 ] {L_1}^{-1} = \left[\begin{array}{lll} 1 \\ {\boldsymbol{-{\frac{1}{2}}}}& 1 \\ -1 & 0 & 1 \end{array}\right] L11=1211101

问:怎么得来的 1 2 和 1 ? \frac{1}{2}和1? 211
a 21 a 11 = 1 2 a 31 a a 11 = 2 2 = 1 \frac{a_{21}}{a_{11}} = \frac{1}{2}\\\frac{a_{31}}{a_{a11}} = \frac{2}{2} = 1 a11a21=21aa11a31=22=1

L 1 − 1 A = [ 2 − 1 3 0 5 2 − 1 2 0 5 − 1 ] = A ( 1 ) {L_1}^{-1}A = \left[\begin{array}{lll} 2 & -1 & 3 \\ 0& {\boldsymbol{\frac{5}{2}}}& {\boldsymbol{-{\frac{1}{2}}}} \\ 0 & 5 & -1 \end{array}\right] = A^{(1)} L11A=20012553211=A(1)

(2)根据 A ( 1 ) A^{(1)} A(1)第2列构造单位下三角矩阵

L 2 = [ 1 0 1 0 2 1 ] {L_2} = \left[\begin{array}{lll} 1 \\ 0 & 1 \\ 0 & 2 & 1 \end{array}\right] L2=100121 L 2 − 1 = [ 1 0 1 0 − 2 1 ] {L_2}^{-1} = \left[\begin{array}{lll} 1 \\ 0 & 1 \\ 0 & -2 & 1 \end{array}\right] L21=100121

L 2 − 1 A ( 1 ) = [ 2 − 1 3 0 5 2 − 1 2 0 0 0 ] = A ( 2 ) {L_2}^{-1}A^{(1)}= \left[\begin{array}{lll} 2 & -1 & 3 \\ 0& {\boldsymbol{\frac{5}{2}}}& {\boldsymbol{-{\frac{1}{2}}}} \\ 0 & 0 & 0 \end{array}\right] = A^{(2)} L21A(1)=20012503210=A(2)

此时可以看到矩阵为上三角形式,因此可以分解成如下形式,得出对角矩阵和单位上三角矩阵

A ( 2 ) = [ 2 5 2 0 ] [ 1 − 1 2 3 2 1 − 1 5 1 ] = D U A^{(2)} = { \left[\begin{array}{lll} 2 \\ &{\boldsymbol{\frac{5}{2}}} \\ & & 0 \end{array}\right] } { \left[\begin{array}{lll} 1&{\boldsymbol{-\frac{1}{2}}} &{\boldsymbol{\frac{3}{2}}} \\ & 1 &{\boldsymbol{-\frac{1}{5}}} \\ & & 1 \end{array}\right] }= DU A(2)=2250121123511=DU

L = L 1 L 2 = [ 1 1 2 1 1 2 1 ] L = {L_1}{L_2}= \left[\begin{array}{lll} 1 \\ {\boldsymbol{\frac{1}{2}}} & 1 \\ 1 & 2 & 1 \end{array}\right] L=L1L2=1211121

因此A是经过L变换得到的DU形式

A = L D U A = LDU A=LDU
A = [ 1 1 2 1 1 2 1 ] [ 2 5 2 0 ] [ 1 − 1 2 3 2 1 − 1 5 1 ] A= \left[\begin{array}{lll} 1 \\ {\boldsymbol{\frac{1}{2}}} & 1 \\ 1 & 2 & 1 \end{array}\right] \left[\begin{array}{lll} 2 \\ &{\boldsymbol{\frac{5}{2}}} \\ & & 0 \end{array}\right] \left[\begin{array}{lll} 1&{\boldsymbol{-\frac{1}{2}}} &{\boldsymbol{\frac{3}{2}}} \\ & 1 &{\boldsymbol{-\frac{1}{5}}} \\ & & 1 \end{array}\right] A=12111212250121123511

二、Cholesky分解

求 A = [ 2 − 1 3 1 2 1 2 4 2 ] 的 C h o l e s k y 分 解 求A= \left[\begin{array}{lll} 2 & -1 & 3 \\ 1 & 2 & 1 \\ 2 & 4 & 2 \end{array}\right]的Cholesky分解 A=212124312Cholesky

解答:过程与LDU一致,只是多了一个步骤

A = L ( D D ) U = L D ( L D ) T = G G T A = L{(\sqrt{D}\sqrt{D})}U = L\sqrt{D}(L\sqrt{D})^T = GG^T A=L(D D )U=LD (LD )T=GGT


三、QR分解

最熟悉的就是正交三角分解方法,但是某些时候运算比较复杂,所以了解一下后两种方法很有必要。

1. 正交三角分解

A = [ 1 2 1 2 1 2 1 2 1 ] , Q R 分 解 A= \left[\begin{array}{lll} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right],QR分解 A=121212121QR

解答:

(1)取A的各列

a 1 = ( 1 , 2 , 1 ) T , a 2 = ( 2 , 1 , 2 ) T , a 3 = ( 2 , 2 , 1 ) T a_1 = (1,2,1)^T, a_2 =(2,1,2)^T, a_3=(2,2,1)^T a1=(1,2,1)T,a2=(2,1,2)T,a3=(2,2,1)T

(2)Schmide正交化

b 1 = a 1 = ( 1 , 2 , 1 ) T , ∣ b 1 ∣ = 6 b_1=a_1=(1,2,1)^T,|b_1|=\sqrt{6} b1=a1=(1,2,1)T,b1=6

b 2 = a 2 − k 21 b 1 = a 2 − b 1 ( 1 , − 1 , 1 ) T ∣ b 2 ∣ = 3 , k 21 = ( a 2 , b 1 ) ( b 1 , b 1 ) = 1 b_2=a_2-k_{21}b_1=a_2-b_1 (1,-1,1)^T \\ |b_2| =\sqrt{3},k_{21}=\frac{(a2,b1)}{(b1,b1)}=1 b2=a2k21b1=a2b1(1,1,1)Tb2=3 ,k21=(b1,b1)(a2,b1)=1

b 2 = a 2 − k 21 b 1 = a 2 − b 1 = ( 1 , − 1 , 1 ) T ∣ b 2 ∣ = 3 , k 21 = ( a 2 , b 1 ) ( b 1 , b 1 ) = 1 b_2=a_2-k_{21}b_1 =a_2-b_1=(1,-1,1)^T\\ |b_2| =\sqrt{3},k_{21} =\frac{(a2,b1)}{(b1,b1)}=1 b2=a2k21b1=a2b1=(1,1,1)Tb2=3 ,k21=(b1,b1)(a2,b1)=1

(3)正交矩阵

Q = [ 1 1 1 2 2 − 1 0 1 1 − 1 2 ] Q = \left[\begin{array}{lll} 1 & 1 & \frac{1}{2} \\ 2 & -1 & 0 \\ 1 & 1 & -\frac{1}{2} \end{array}\right] Q=12111121021

C = [ 1 k 21 k 31 1 k 32 1 ] = [ 1 1 7 6 1 1 3 1 ] C = \left[\begin{array}{lll} 1 & k_{21} & k_{31} \\ & 1 & k_{32} \\ & & 1 \end{array}\right]= \left[\begin{array}{lll} 1 & 1 & \frac{7}{6} \\ & 1 & \frac{1}{3} \\ & & 1 \end{array}\right] C=1k211k31k321=11167311

R = d i a g ( ∣ b 1 ∣ , ∣ b 2 ∣ , ∣ b 3 ∣ ) C R = diag(|b_1|,|b_2|,|b_3|)C R=diag(b1,b2,b3)C
R = [ 6 3 1 2 ] [ 1 1 7 6 1 1 3 1 ] R= \left[\begin{array}{lll} \sqrt{6} \\ & \sqrt{3} \\ & & \frac{1}{\sqrt{2}} \end{array}\right] \left[\begin{array}{lll} 1 & 1 & \frac{7}{6} \\ & 1 & \frac{1}{3} \\ & & 1 \end{array}\right] R=6 3 2 111167311

∴ A = Q R \therefore A=QR A=QR

2. Givens变换方法(初等旋转)

A = [ 0 1 1 1 1 0 1 0 1 ] , Q R 分 解 A= \left[\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right],QR分解 A=011110101QR
解答:

(1) 对 A 的 第 1 列 a 1 = ( 0 , 1 , 1 ) T , 构 造 T 12 对A的第1列a_1=(0,1,1)^T,构造T_{12} A1a1=(0,1,1)TT12

T 1 a 1 = ∣ a 1 ∣ e 1 = 2 e 1 T_1a_1=|a_1|e_1=\sqrt{2}e_1 T1a1=a1e1=2 e1 T 12 ( c , s ) , c = 0 , s = 1 T_{12}(c,s),c=0,s=1 T12(c,s),c=0,s=1 T 12 = [ 0 1 0 − 1 0 0 0 0 1 ] , T 12 a 1 = [ 1 0 1 ] T_{12}= \left[\begin{array}{lll} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right],T_{12}a_1= \left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] T12=010100001,T12a1=101

(2) 对 T 1 a 1 构 造 T 13 对T_1a_1构造T_{13} T1a1T13

T 13 ( c , s ) , c = 1 2 , s = 1 2 T_{13}(c,s),c=\frac{1}{\sqrt{2}},s=\frac{1}{\sqrt{2}} T13(c,s),c=2 1,s=2 1

T 13 = [ 1 2 0 1 2 0 1 0 − 1 2 0 1 2 ] T_{13}= \left[\begin{array}{lll} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right] T13=2 102 10102 102 1

得到变换矩阵 T 1 T_1 T1

T 1 = T 13 T 12 = [ 0 1 2 1 2 − 1 0 0 0 − 1 2 1 2 ] T_1=T_{13}T_{12}= \left[\begin{array}{lll} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -1 & 0 & 0 \\ 0& -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right] T1=T13T12=0102 102 12 102 1

A 经 过 T 1 A经过T_1 AT1变换

T 1 A = [ 2 1 2 1 2 0 − 1 − 1 0 − 1 2 1 2 ] T_{1} A=\left[\begin{array}{ccc} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -1 & -1 \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right] T1A=2 002 112 12 112 1

(3)得到新矩阵,继续构造变换矩阵

令 A ( 1 ) = [ − 1 − 1 − 1 2 1 2 ] , b 1 = ( − 1 , − 1 2 ) T 构 造 T 2 令A^{(1)}=\left[\begin{array}{cc} -1 & -1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right] ,b_{1}=\left(-1,-\frac{1}{\sqrt{2}}\right)^{T}构造T_2 A(1)=[12 112 1]b1=(1,2 1)TT2

T 12 = [ − 2 3 − 1 3 1 3 − 2 3 ] T 12 b 1 = [ 3 2 0 ] T_{12}=\left[\begin{array}{cc} -\frac{\sqrt{2}}{3} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \end{array}\right] \quad T_{12} b_{1}=\left[\begin{array}{c} \frac{\sqrt{3}}{2} \\ 0 \end{array}\right] T12=32 3 13 132 T12b1=[23 0]

得 到 变 换 矩 阵 T 2 得到变换矩阵T_2 T2

T 2 = T 12 = [ − 2 3 − 1 3 1 3 − 2 3 ] \begin{aligned} &T_{2}=T_{12}=\left[\begin{array}{cc} -\frac{\sqrt{2}}{3} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{\sqrt{2}}{3} \end{array}\right]\end{aligned} T2=T12=[32 3 13 132 ]

A ( 1 ) 经 由 T 2 变 换 A_{(1)}经由T_2变换 A(1)T2

T 2 A ( 1 ) = [ − 2 3 1 6 0 − 2 3 ] \begin{aligned} T_{2} A^{(1)}=\left[\begin{array}{cc} -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{2}{\sqrt{3}} \end{array}\right] \\ \end{aligned} T2A(1)=[32 06 13 2]

(3)已经得到了上三角矩阵,得到了最后的变换矩阵T,写出分解结果

T = [ 1 T 2 ] T 1 T=\left[\begin{array}{l} 1 \\ T_{2} \end{array}\right] T_{1} \\ T=[1T2]T1

Q = T T , R = T A Q=T^{T} ,R=T A Q=TT,R=TA

A = Q R A=Q R A=QR


3. Householder变换方法(初等反射)

A = [ 3 14 9 6 43 3 6 22 15 ] , Q R 分 解 A=\left[\begin{array}{ccc} 3 & 14 & 9 \\ 6 & 43 & 3 \\ 6 & 22 & 15 \end{array}\right],QR分解 A=3661443229315QR

解答:

(1)对A的第1列 a 1 = ( 3 , 6 , 6 ) T a_1=(3,6,6)^{T} a1=(3,6,6)T构造H变换

a 1 − ∣ a 1 ∣ e 1 = 6 [ − 1 1 1 ] μ = a 1 − ∣ a 1 ∣ e 1 ∣ a 1 − ∣ a 1 ∣ e 1 ∣ = 1 3 [ − 1 1 1 ] H 1 = 1 − 2 μ μ ⊤ = 1 3 [ 1 2 2 2 1 − 2 2 − 2 1 ] H 1 A = [ 9 48 15 0 9 − 3 0 − 12 9 ] \begin{aligned} &a_{1}-\left|a_{1}\right| e_{1}=6\left[\begin{array}{c} -1 \\ 1 \\ 1 \end{array}\right]\\ &\mu=\frac{a_{1}-\left|a_{1}\right| e_{1}}{\left|a_{1}-\right| a_{1}\left|e_{1}\right|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c} -1 \\ 1 \\ 1 \end{array}\right]\\ &H_{1}=1-2 \mu \mu^{\top}=\frac{1}{3}\left[\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{array}\right]\\ &H_{1} A=\left[\begin{array}{ccc} 9 & 48 & 15 \\ 0 & 9 & -3 \\ 0 & -12 & 9 \end{array}\right] \end{aligned} a1a1e1=6111μ=a1a1e1a1a1e1=3 1111H1=12μμ=31122212221H1A=900489121539

由 H 1 变 换 得 到 A ( 1 ) 由H_1变换得到A^{(1)} H1A(1)

A ( 1 ) = [ 9 − 3 − 12 9 ] A^{(1)}=\left[\begin{array}{cc} 9 & -3 \\ -12 & 9 \end{array}\right] A(1)=[91239]

(2)对 A ( 1 ) A^{(1)} A(1)的第1列 b 1 = [ 9 − 12 ] b_{1}=\left[\begin{array}{c}9 \\-12\end{array}\right] b1=[912]构造H变换矩阵

b 1 − ∣ b 1 ∣ e 1 = 6 [ − 1 − 2 ] μ = b 1 − ∣ b 1 ∣ e 1 ∣ b 1 − ∣ b 1 ∣ e 1 ∣ = 1 5 [ − 1 − 2 ] H 2 = 1 − 2 μ μ ⊤ = 1 5 [ 3 − 4 − 4 − 3 ] H 2 A ( 1 ) = [ 15 − 9 0 − 3 ] \begin{aligned} &b_{1}-\left|b_{1}\right| e_{1}=6\left[\begin{array}{c} -1 \\ -2 \end{array}\right] \\ &\mu=\frac{b_{1}-\left|b_{1}\right| e_{1}}{\left|b_{1}-\right| b_{1}\left|e_{1}\right|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l} -1 \\ -2 \end{array}\right] \\ &H_{2}= 1 -2 \mu \mu^{\top}=\frac{1}{5}\left[\begin{array}{cc} 3 & -4 \\ -4 & -3 \end{array}\right] \\ &H_{2} A^{(1)}=\left[\begin{array}{ll} 15 & -9 \\ 0 & -3 \end{array}\right] \end{aligned} b1b1e1=6[12]μ=b1b1e1b1b1e1=5 1[12]H2=12μμ=51[3443]H2A(1)=[15093]

(3)写出A的H变换矩阵S,得出分解结果

S = [ 1 H 2 ] H 1 = 1 15 [ 5 10 10 − 1 11 − 10 − 14 2 5 ] R = S A = [ 9 48 15 15 − 9 15 − 3 ] Q = S T = 1 15 [ 5 − 2 − 14 10 11 2 10 − 10 5 ] \begin{aligned} &S=\left[\begin{array}{ll} 1 & \\ & H_{2} \end{array}\right] H_{1}=\frac{1}{15}\left[\begin{array}{ccc} 5 & 10 & 10 \\ -1 & 11 & -10 \\ -14 & 2 & 5 \end{array}\right] \\ &R=S A=\left[\begin{array}{ccc} 9 & 48 & 15 \\ 15 & -9 \\ 15 & -3 \end{array}\right] \\ &Q=S^{T}=\frac{1}{15}\left[\begin{array}{ccc} 5 & -2 & -14 \\ 10 & 11 & 2 \\ 10 & -10 & 5 \end{array}\right]\end{aligned} S=[1H2]H1=15151141011210105R=SA=91515489315Q=ST=15151010211101425

∴ A = Q R \begin{aligned}\therefore A=Q R \end{aligned} A=QR


四、 满秩分解

两种方法:初等行变换和Hermite标准形
A = [ − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 ] , 对 矩 阵 A 满 秩 分 解 F G A=\left[\begin{array}{cccc} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \end{array}\right],对矩阵A满秩分解FG A=112022112211AFG

方法(1)初等行变换

[ A ∣ I ] = [ − 1 0 1 2 ⋮ 1 0 0 1 2 − 1 1 ⋮ 0 1 0 2 2 − 2 − 1 ⋮ 0 0 1 ] ⟶ 行 变 换 [ − 1 0 1 2 ⋮ 1 0 0 0 2 0 3 ⋮ 0 1 0 0 0 0 0 ⋮ 1 − 1 1 ] \begin{gathered} \left.[A|{I}\right]=\left[\begin{array}{ccccccc} -1 & 0 & 1 & 2 & \vdots & 1 & 0 & 0 \\ 1 & 2 & -1 & 1 & \vdots & 0 & 1 & 0 \\ 2 & 2 & -2 & -1& \vdots & 0 & 0 & 1 \end{array}\right] \\ \stackrel{行变换}{\longrightarrow}\left[\begin{array}{ccccccc} -1 & 0 & 1 & 2 & \vdots & 1 & 0 & 0 \\ 0 & 2 & 0 & 3 & \vdots &0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \vdots &1 & -1 & 1 \end{array}\right] \end{gathered} [AI]=112022112211100010001100020100230101011001

左边是一个熟悉的行最简,前两行就是G。右边为矩阵P,算出P的逆矩阵,前两列就是F

P = [ 1 0 0 0 1 0 1 − 1 1 ] , P − 1 = [ 1 0 0 − 1 1 0 − 2 1 1 ] P=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{array}\right] ,P^{-1}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 1 & 1 \end{array}\right] P=101011001P1=112011001

F = [ − 1 0 − 1 1 − 2 1 ] , G = [ − 1 0 1 2 0 2 0 3 ] F=\left[\begin{array}{cc} -1 & 0 \\ -1 & 1 \\ -2 & 1 \end{array}\right], G=\left[\begin{array}{cccc} -1 & 0 & 1 & 2 \\ 0 & 2 & 0 & 3 \end{array}\right] F=112011,G=[10021023]

相乘得到结果

∴ A = F G = [ − 1 0 − 1 1 − 2 1 ] [ − 1 0 1 2 0 2 0 3 ] \therefore A=FG=\left[\begin{array}{cc} -1 & 0 \\ -1 & 1 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cccc} -1 & 0 & 1 & 2 \\ 0 & 2 & 0 & 3 \end{array}\right] A=FG=112011[10021023]

方法(2)Hermite标准形:

通过行变换得到标准形

A = [ 0 0 1 2 1 1 2 j j 0 ] ( j = − 1 ) →  行变换  [ 1 1 2 0 0 0 1 0 0 0 ] = G  (Hermite)  \begin{aligned} &A=\left[\begin{array}{lll} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 2 j & j & 0 \end{array}\right](j=\sqrt{-1}) &\stackrel{\text { 行变换 } }{\rightarrow}\left[\begin{array}{lll} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]=G \text { (Hermite) } \end{aligned} A=022j01j110(j=1 ) 行变换 1002100010=G (Hermite) 

∴ c 1 = 1 , c 2 = 3 , F 取 第 1 和 第 3 列 \begin{aligned}&\therefore {c_1=1 , c_2=3},F取第1和第3列\end{aligned} c1=1,c2=3,F13

F = [ 0 1 2 1 2 j 0 ] \begin{aligned}F=\left[\begin{array}{cc} 0 & 1 \\ 2 & 1 \\ 2 j & 0\end{array}\right]\end{aligned} F=022j110

∴ A = F G = [ 0 1 2 1 2 j 0 ] [ 1 1 2 0 0 0 1 ] \begin{aligned}&\therefore A=FG=\left[\begin{array}{cc} 0 & 1 \\ 2 & 1 \\ 2 j & 0 \end{array}\right] \left[\begin{array}{lll} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned} A=FG=022j110[1021001]


五、奇异值分解

奇 异 值 分 解 即 A = U [ ∑ 0 0 0 ] V H 奇异值分解即A=U\left[\begin{array}{ll} \sum & 0 \\ 0 & 0 \end{array}\right] V^{H} A=U[000]VH
A = [ 1 0 1 0 1 1 0 0 0 ] , 对 矩 阵 A 进 行 奇 异 值 分 解 。 A=\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right],对矩阵A进行奇异值分解。 A=100010110A
解答:
(1)首先求 A T A A^TA ATA特征值和特征向量

B = A T A = [ 1 0 1 0 1 1 1 1 2 ] ⇒ λ 1 = 3 λ 2 = 1 λ 3 = 0 B=A^{T} A=\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right] \Rightarrow \begin{aligned} &\lambda_{1}=3 \\ &\lambda_{2}=1 \atop \lambda_{3}=0 \end{aligned} B=ATA=101011112λ1=3λ3=0λ2=1

特 征 值 向 量 为 特征值向量为
ξ 1 = [ 1 1 2 ] ξ 2 = [ 1 − 1 0 ] ξ 3 = [ 1 1 − 1 ] \xi_{1}=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right] \xi_{2}=\left[\begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right] \xi_{3}=\left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right] ξ1=112ξ2=110ξ3=111

rank ⁡ A = 2 , Σ = [ 3 0 0 1 ] \operatorname{rank} A=2, \Sigma=\left[\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \end{array}\right] rankA=2,Σ=[3 001]

(2)得到正交矩阵

∴ V = [ 1 6 1 2 1 3 1 6 − 1 2 1 3 2 6 0 1 3 ] ( 正 交 矩 阵 ) \therefore V=\left[\begin{array}{ccc} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{array}\right](正交矩阵) V=6 16 16 22 12 103 13 13 1)
V 1 = [ 1 3 1 2 1 6 − 1 2 2 6 0 ] \begin{aligned} &V_{1}=\left[\begin{array}{cc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{array}\right] \end{aligned} V1=3 16 16 22 12 10

(3)根据公式计算出U

U 1 = A V 1 Σ − 1 = [ 1 2 1 2 1 2 1 2 0 0 ] U 2 = [ 0 0 1 ] U = [ U 1 ⋮ U 2 ] = [ 1 2 1 2 0 1 2 − 1 2 0 0 0 1 ] \begin{gathered}U_{1}=A V_{1} \Sigma^{-1}=\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{array}\right]\\ U_{2}=\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right] \\ U=\left[U_{1} \vdots U_{2}\right]=\left[\begin{array}{ccc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{array}\right] \end{gathered} U1=AV1Σ1=2 12 102 12 10U2=001U=[U1U2]=2 12 102 12 10001

∴ A = U [ 3 0 0 0 1 0 0 0 0 ] V T \therefore A=U\left[\begin{array}{ccc} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right] V^{T} A=U3 00010000VT


总结

建议有时间的可以好好学学这一部分,这部分在编程的时候用处比较大,便于计算机计算分析矩阵。

参考资料

本文章题目以及知识点部分源于
1、《矩阵论》—张凯院,西北工业大学出版社第4版
2、《矩阵论—讲稿》—张凯院
3、《矩阵论》——国科大2021秋季叶世伟上课PPT

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 北航矩阵论试题pdf是北航(北京航空航天大学)教授或提供的一份关于矩阵论的试题集,以PDF格式提供给学生和其他有兴趣的人参考和学习。 矩阵论是数学中一个重要的分支,涉及到矩阵的运算、性质和应用等方面。矩阵在各个学科和领域中都有广泛的应用,如线性代数、物理学、计算机科学等。因此,对于学习和掌握矩阵论知识是非常重要的。 北航矩阵论试题pdf可能包括一系列的习题和问题,涉及到矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量等内容。通过解答这些试题,可以帮助学生巩固和理解矩阵论的相关知识,培养分析和解决问题的能力。 对于有兴趣或需要学习矩阵论的人来说,北航矩阵论试题pdf是一个很好的学习资料。通过仔细阅读和理解试题,思考和解答其中的问题,可以提高对矩阵论知识的理解和应用能力。 总之,北航矩阵论试题pdf是北航提供的关于矩阵论的试题集,通过解答这些试题,可以提高对矩阵论知识的理解和应用能力,对于学习和掌握矩阵论知识有一定的帮助。 ### 回答2: 北航矩阵论试题 pdf 是指北京航空航天大学在矩阵论方面的考试试题以及相关答案文档,一般以 PDF 格式进行发布和传播。矩阵论是数学中的一个重要分支,研究矩阵的性质、运算和应用等。对于北航的学生而言,掌握矩阵论知识是他们专业学习的一部分。 北航矩阵论试题 pdf 提供了学生们在备考期间进行复习和练习的材料。学生可以通过阅读试题了解北航矩阵论课程的考查重点以及题型分布,从而有针对性地进行学习。试题中的相关答案文档也为学生提供了自我检测和纠错的机会,帮助他们更好地理解和掌握矩阵论知识。 通过北航矩阵论试题 pdf 的学习,学生们可以提高解决矩阵相关问题的能力,增强他们的逻辑思维和推理能力。同时,这也为他们将来在工程实践和科学研究中应用矩阵论提供了坚实的理论基础。 总之,北航矩阵论试题 pdf 是北航学生在学习矩阵论课程过程中重要的学习资料。它通过提供试题和相关答案文档,帮助学生加深理解矩阵论知识、提高解题能力,为他们未来的学习和应用打下坚实的基础。 ### 回答3: 北航矩阵论试题PDF是北航发布的一份试题材料,主要用于学生复习和备考矩阵论课程。该PDF文件包含了一系列矩阵论的试题,涵盖了该课程的各个知识点和重要内容。 首先,矩阵论线性代数的一个分支,是现代数学领域中非常重要的一个研究方向。它主要研究矩阵的性质与运算,以及与线性方程组、线性映射等数学对象之间的关系。在许多领域中,如物理学、工程学、计算机科学等都会广泛应用到矩阵论的知识。 北航矩阵论试题PDF提供了一些典型的试题,通过解答这些试题,学生们可以巩固并加深对矩阵论知识的理解。试题设计了不同难度的问题,涉及到矩阵的基本操作、特征值与特征向量、矩阵的相似、矩阵分解等知识点。通过学生对试题的分析与解答,不仅可以帮助他们检验自己对知识的掌握程度,还可以培养他们的问题解决和推理能力。 在准备矩阵论考试的过程中,学生可以从北航矩阵论试题PDF中选择合适的试题进行针对性的练习和复习。同时,可以通过对试题的讲解与探讨,加深对矩阵论知识的理解,掌握解题技巧,提高解题效率。此外,学生还可以通过对试题的反复练习,强化对矩阵论知识的记忆,提升应对考试的信心和能力。 总之,北航矩阵论试题PDF为学生提供了一个重要的复习工具,通过解答试题,学生可以更好地掌握矩阵论知识,提高考试成绩,为未来的学习和研究打下坚实的基础。同时,对于对矩阵论感兴趣的人而言,北航矩阵论试题PDF也是一个宝贵的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoetu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值