210. 课程表 II
现在你总共有 numCourses
门课需要选,记为 0
到 numCourses - 1
。给你一个数组 prerequisites
,其中 prerequisites[i] = [ai, bi]
,表示在选修课程 ai
前 必须 先选修 bi
。
- 例如,想要学习课程
0
,你需要先完成课程1
,我们用一个匹配来表示:[0,1]
。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:
输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
示例 3:
输入:numCourses = 1, prerequisites = []
输出:[0]
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
- 所有
[ai, bi]
互不相同
二、方法一
拓扑结构+深度优先搜索(判断是否有环,拓扑结构无环)
class Solution {
List<List<Integer>> edges;
int[] visited;
boolean vaild = true;
int[] res;
int idx;
public int[] findOrder(int numCourses, int[][] prerequisites) {
edges = new ArrayList<>();
res = new int[numCourses];
visited = new int[numCourses];
idx = numCourses - 1;
for (int i = 0; i < numCourses; i++) {
edges.add(new ArrayList<Integer>());
}
for (int[] prerequisite : prerequisites) {
edges.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < numCourses; i++) {
if (visited[i] == 0) {
dfs(i);
}
}
if (!vaild){
return new int[0];
}
return res;
}
public void dfs(int u) {
visited[u] = 1;
for (int v : edges.get(u)) {
if (visited[v] == 1) {
vaild = false;
return;
} else if(visited[v] == 0) {
dfs(v);
if (!vaild) {
return;
}
}
}
visited[u] = 2;
res[idx--] = u;
}
}
复杂度分析
-
时间复杂度: O(n+m),其中 n 为课程数,m 为先修课程的要求数。这其实就是对图进行深度优先搜索的时间复杂度。
-
空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为 O(n+m)。在深度优先搜索的过程中,我们需要最多 O(n) 的栈空间(递归)进行深度优先搜索,因此总空间复杂度为 O(n+m)。