LeetCode 210. 课程表 II

210. 课程表 II

现在你总共有 numCourses 门课需要选,记为 0numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai必须 先选修 bi

  • 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1]

返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。

示例 2:

输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。

示例 3:

输入:numCourses = 1, prerequisites = []
输出:[0]

提示:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= numCourses * (numCourses - 1)
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • ai != bi
  • 所有[ai, bi] 互不相同

二、方法一

拓扑结构+深度优先搜索(判断是否有环,拓扑结构无环)

class Solution {
    List<List<Integer>> edges;
    int[] visited;
    boolean vaild = true;
    int[] res;
    int idx;
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        edges = new ArrayList<>();
        res = new int[numCourses];
        visited = new int[numCourses];
        idx = numCourses - 1;
        for (int i = 0; i < numCourses; i++) {
            edges.add(new ArrayList<Integer>());
        }
        for (int[] prerequisite : prerequisites) {
            edges.get(prerequisite[1]).add(prerequisite[0]);
        }
        for (int i = 0; i < numCourses; i++) {
            if (visited[i] == 0) {
                dfs(i);
            }
        }
        if (!vaild){
            return new int[0];
        }
        return res;
    }

    public void dfs(int u) {
        visited[u] = 1;
        for (int v : edges.get(u)) {
            if (visited[v] == 1) {
                vaild = false;
                return;
            } else if(visited[v] == 0) {
                 dfs(v);
                if (!vaild) {
                    return;
                }
            }
        }
        visited[u] = 2;
        res[idx--] = u;
    }
}

复杂度分析

  • 时间复杂度: O(n+m),其中 n 为课程数,m 为先修课程的要求数。这其实就是对图进行深度优先搜索的时间复杂度。

  • 空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为 O(n+m)。在深度优先搜索的过程中,我们需要最多 O(n) 的栈空间(递归)进行深度优先搜索,因此总空间复杂度为 O(n+m)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值