利用n!性质求大组合数(m≤10^5,m≤10^5)【n!中有多少个质因子p】

在这里插入图片描述

n!

我们知道组合数的结果是一个整数,这个整数可以表示成若干个质因子的乘积,如:12=2×2×4,那么如果我们知道分子、分母中每个质因子出现的次数,就可以很容易得到组合数的值。我们可以在 O ( l o g n ) O(log{n}) O(logn)的复杂度内求出n里面每个质因子出现的次数,那么n!就需要 O ( n l o g n ) O(nlog{n}) O(nlogn)的复杂度

但这里想说的是关于n!的另外一个性质:怎么求n!中某一个质因子出现的次数,来源:算法笔记
在这里插入图片描述
但是这个性质好像不能降低前面 O ( n l o g n ) O(nlog{n}) O(nlogn)的复杂度
例题:P3807 【模板】卢卡斯定理
代码:

#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
const int manx = 1e6 + 7;
int prime[manx];
bool vis[manx];
int num[manx];
int make_prime(int n)
{
     int cou=0;
     memset(prime,0,sizeof(prime));
     memset(vis,0,sizeof(vis));
     vis[0]=vis[1]=1;
     for(int i=2;i<=n;i++)
     {
          if(!vis[i])
               prime[cou++]=i;
          for(int j=0;j<cou;j++)
          {
               if(i*prime[j]>n)break;
               vis[i*prime[j]]=1;
               if(i%prime[j]==0)break;
          }
     }
     return cou;
}
LL quick_pow(LL a,LL b,LL m)
{
     LL ans=1;
     while(b)
     {
          if(b&1)
               ans=(ans*a)%m;
          a=(a*a)%m;
          b>>=1;
     }
     return ans;
}
int cal(int n,int p)
{
     int ans=0;
     while(n)
     {
          ans+=n/p;
          n/=p;
     }
     return ans;
}
int main()
{
     LL n,m,p,t;
     scanf("%lld",&t);
     while(t--)
     {
          scanf("%lld%lld%lld",&n,&m,&p);
          m+=n;
          LL ans=1;
          int cou_prime=make_prime(100000);
          for(int i=0;i<cou_prime;i++)
               num[prime[i]]=cal(m,prime[i]);
          for(int i=0;i<cou_prime;i++)
               num[prime[i]]-=cal(n,prime[i]);
          for(int i=0;i<cou_prime;i++)
               num[prime[i]]-=cal(m-n,prime[i]);
          for(int i=0;i<cou_prime;i++)
          {
               if(num[prime[i]])
               {
                    ans=(ans*quick_pow(prime[i],num[prime[i]],p))%p;
               }
          }
          printf("%lld\n",ans);
     }
}

通过递推公式计算

在这里插入图片描述
在这种计算方法下完全不涉及阶乘运算,但是会产生另一个问题:重复计算,此处会有很多C(n, m)是曾经已经计算过的,不应该重复计算。因此不妨记录下已经计算过的C(n,m),这样当下次再次碰到时就可以作为结果直接返回了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值