n!
我们知道组合数的结果是一个整数,这个整数可以表示成若干个质因子的乘积,如:12=2×2×4,那么如果我们知道分子、分母中每个质因子出现的次数,就可以很容易得到组合数的值。我们可以在 O ( l o g n ) O(log{n}) O(logn)的复杂度内求出n里面每个质因子出现的次数,那么n!就需要 O ( n l o g n ) O(nlog{n}) O(nlogn)的复杂度
但这里想说的是关于n!的另外一个性质:怎么求n!中某一个质因子出现的次数,来源:算法笔记
但是这个性质好像不能降低前面
O
(
n
l
o
g
n
)
O(nlog{n})
O(nlogn)的复杂度
例题:P3807 【模板】卢卡斯定理
代码:
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
const int manx = 1e6 + 7;
int prime[manx];
bool vis[manx];
int num[manx];
int make_prime(int n)
{
int cou=0;
memset(prime,0,sizeof(prime));
memset(vis,0,sizeof(vis));
vis[0]=vis[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])
prime[cou++]=i;
for(int j=0;j<cou;j++)
{
if(i*prime[j]>n)break;
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
return cou;
}
LL quick_pow(LL a,LL b,LL m)
{
LL ans=1;
while(b)
{
if(b&1)
ans=(ans*a)%m;
a=(a*a)%m;
b>>=1;
}
return ans;
}
int cal(int n,int p)
{
int ans=0;
while(n)
{
ans+=n/p;
n/=p;
}
return ans;
}
int main()
{
LL n,m,p,t;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld",&n,&m,&p);
m+=n;
LL ans=1;
int cou_prime=make_prime(100000);
for(int i=0;i<cou_prime;i++)
num[prime[i]]=cal(m,prime[i]);
for(int i=0;i<cou_prime;i++)
num[prime[i]]-=cal(n,prime[i]);
for(int i=0;i<cou_prime;i++)
num[prime[i]]-=cal(m-n,prime[i]);
for(int i=0;i<cou_prime;i++)
{
if(num[prime[i]])
{
ans=(ans*quick_pow(prime[i],num[prime[i]],p))%p;
}
}
printf("%lld\n",ans);
}
}
通过递推公式计算
在这种计算方法下完全不涉及阶乘运算,但是会产生另一个问题:重复计算,此处会有很多C(n, m)是曾经已经计算过的,不应该重复计算。因此不妨记录下已经计算过的C(n,m),这样当下次再次碰到时就可以作为结果直接返回了。