全微分方程是指可以写成形式为 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 的方程,其中 $M$ 和 $N$ 是关于 $x$ 和 $y$ 的可微函数。
充分性证明:
如果 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是全微分方程,那么存在一个函数 $u(x,y)$ 满足:
$$\frac{\partial u}{\partial x}=M(x,y),\quad\frac{\partial u}{\partial y}=N(x,y)$$
因此,我们可以通过对 $u(x,y)$ 求偏导数来得到:
$$\mathrm{d}u=\frac{\partial u}{\partial x}\mathrm{d}x+\frac{\partial u}{\partial y}\mathrm{d}y=M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y$$
这意味着 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 可以被写成 $\mathrm{d}u=0$ 的形式,也就是说,它是一个恰当的微分方程。
必要性证明:
如果 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是一个恰当的微分方程,那么存在一个函数 $u(x,y)$ 满足:
$$\frac{\partial u}{\partial x}=M(x,y),\quad\frac{\partial u}{\partial y}=N(x,y)$$
我们可以通过偏导数的定义来证明这一点。因为 $M(x,y)$ 和 $N(x,y)$ 是可微的,所以它们是连续的,那么根据多元微积分中的 Schwarz 定理,我们可以得到:
$$\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial M(x,y)}{\partial y}=\frac{\partial N(x,y)}{\partial x}=\frac{\partial^2 u}{\partial y\partial x}$$
这意味着 $\frac{\partial^2 u}{\partial x\partial y}-\frac{\partial^2 u}{\partial y\partial x}=0$,也就是说,$u(x,y)$ 是一个二阶连续可微函数。因此,我们可以使用 Clairaut 定理来得到:
$$\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial^2 u}{\partial y\partial x}$$
因此,我们得到:
$$\frac{\partial M(x,y)}{\partial y}=\frac{\partial N(x,y)}{\partial x}$$
这表明 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是一个全微分方程。